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1 Problem

An electrically neutral current-loop,1 with magnetic dipole m0, that is at rest in a static,
uniform electric field E0 experiences no force or torque. However, if that system is observed
in the lab frame where the loop has velocity v parallel to E0, and v � c, where c is the speed
of light, then there appears to be an electric dipole moment,2 p = v/c×m0 associated with
the loop (in Gaussian units). Näıvely, the torque on this moment due to the electric field
(which has strength E = E0 + O(v2/c2) in the lab frame) is τ = p× E ≈ E0vm0/c.

Can/should the torque be different in different frames of reference?
This paradox was first posed by Spavieri [3]3 and more recently by Mansuripur [7].4,5 It

is a conceptual variant of a famous problem by Shockley [16] that introduced the concept of
“hidden mechanical momentum”.6

The paradox is compounded by supposing the static, “uniform” electric field is due to a
single electric charge q at large, fixed distance from the magnetic moment in the rest frame
of the latter, and the lab-frame velocity v is along the line of centers of the charge and
moment. Discuss the force on charge q in the lab frame.7

1This problem avoids the delicate issue of whether a current loop actually is electrically neutral, näıvely
assuming this to be so. For discussion of the small departures from this assumption required so that the
transverse force on the conduction charges equal the centripetal force, see [1].

2See, for example, eq. (2) of [2].
3Spavieri built on earlier examples of Bedford and Krumm [4] that were also discussed by Namias [5]

and by Vaidman [6].
4Mansuripur’s main concern seems to be with an old debate about the electrodynamics of moving media,

and the validity of the Lorentz force law in such media, being unaware that there is no generally valid form
of the Lorentz force law that uses the total E, D, B and H fields of macroscopic electrodynamics. Among
the extensive literature on this subject, see, for example [8]. See also [9] by the author. Mansuripur claims
to resolve the paradox by use of the so-called Einstein-Laub force density [10, 11], which was derived from an
invalid form of the Lorentz force law and leads to nonzero self forces, as discussed in [12] and in sec. 2.3.1 of
[13]. Mansuripur also becomes enmeshed in the so-called Abraham-Minkowski debate concerning the nature
of “electromagnetic” momentum in media at rest (see, for example, [14], where Table 1 summarizes five
variants of the electromagnetic force law). Mansuripur considers that magnetic dipoles based on conduction-
current loops are equivalent to (quantum) magnetization, and notes that if one uses the Abraham field
momentum rather than the Minkowski momentum, then there is no field momentum for magnetization in an
electric field, and no “hidden” mechanical momentum. However, this argument does not apply to a magnetic
dipole based on a loop of conduction current, which appears to be the subject of [7].

5A related issue is that the torque on a pair of charged particles with relative motion is nonzero in
general, but is zero if one particle is fixed in a particular inertial frame [15].

6See [17] for commentary on the relation between “hidden” mechanical momentum and the Abraham-
Minkowski debate.

7This configuration is that of the Aharonov-Bohm effect [18], which has the classical paradox that if
the charge is in motion in the rest frame of the magnetic moment, then the magnetic moment, but not the
charge, is subject to a force [19].
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2 Solution

The magnetic moment of a loop of current I of radius a has the magnitude m0 = πa2I/c,
so the supposed lab-frame torque, of magnitude τ = E0vm0/c = πa2IE0v/c2, is an effect of
order 1/c2. Hence, discussion of the problem should include all relevant effects at order 1/c2,
even though the restriction that v � c suggests that terms of order 1/c2 could be ignored.8

The presence of a torque τ = p × E would suggest that the lab-frame electric dipole
moment p will “precess” about m0 so as to bring it into alignment with the electric field E.

However, the apparent electric dipole moment p = v/c×m0 is independent of E, and so
cannot move into alignment with that field.9 It must be that the torque, if it exists, has no
effect on the mechanical configuration of the system.

A key to the resolution of the paradox is that moving dipoles do not have the properties
that one might näıvely associate with them, based on understanding in their rest frame
(sec. 2.1). Analysis of a moving dipole in the lab frame is best obtained via transformation
from its rest frame, which implies that the torque is nonzero in the lab frame in the present
example.

Before detailed analysis of the lab-frame torque in sec. 2.3, we first discuss a force paradox
(sec. 2.2) which illustrates that the lab-frame fields of a moving dipole are not those näıvely
associated with the lab-frame moments p and m. The need for a nonzero torque in the lab
frame is related to the existence of time-dependent “hidden” angular momentum in the lab
frame, are discussed in secs. 2.4-5. The complementary problem of an electric dipole in an
external magnetic field is considered in sec. 2.6. Finally, in sec. 2.7 we note that the present
example cannot be realized in systems with “ordinary” (or superconducting) currents, but
could only arise in rather “academic” thought experiments if conduction-current loops are
involved.

2.1 Ambiguity as to the Meaning of Moving Dipole Moments

The concepts of dipole moments arose in examples of systems with charges at rest, and/or
where all current densities J are divergence free (i.e., ∇ ·J = 0). In particular, the definition
of the magnetic moment m as

m =

∫
r × J

2c
dVol (1)

assumes that ∇ · J = 0, which does not hold for the present example in the lab frame where
the current density has bulk motion.

One can define electric and magnetic dipole moments p and m in any frame in terms
of volume integrals of the densities P and M of electric and magnetic polarization (in that
frame), respectively,

p =

∫
P dVol, m =

∫
M dVol. (2)

8This point was emphasized by Coleman and Van Vleck [20] in their commentary on [16].
9When v is parallel to E (and B = 0), there is no precession of the magnetic moment m0. See, for

example, [21, 22]. This result applies also to spin-1/2 elementary particles, whose magnetic moment is the
quantum equivalent of current loops, rather than pairs of equal and opposite magnetic charges, as first noted
by Fermi [23] based on considerations of the hyperfine interaction.
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The relativistic transformations of densities P and M were first discussed by Lorentz
[24], who noted that they follow the same transformations as do the magnetic and electric
fields B = H + 4πM and E = D − 4πP, respectively,

P = γ
(
P0 +

v

c
× M0

)
− (γ − 1)(v̂ · P0)v̂, M = γ

(
M0 − v

c
× P0

)
− (γ − 1)(v̂ · M0)v̂, (3)

where the inertial lab frame moves with velocity v with respect to the (inertial) rest frame
of the polarization densities, and γ = 1/

√
1 − v2/c2.

Considerations of the fields moving electric dipoles perhaps first arose in the context of
Čerenkov radiation when the dipole velocity v exceeds the speed of light c/n in a medium
of index of refraction n [25]. Later discussions by Frank of his pioneering work are given in
[26, 27].10

As noted by Frank [27],11 specialization of eq. (3) to point electric and magnetic dipole
moments p and m, and to low velocities, leads to the forms

p ≈ p0 +
v

c
× m0, m ≈ m0 − v

c
× p0, p0 ≈ p− v

c
× m, m0 ≈ m +

v

c
× p, (4)

where p0 and m0 and the moments in the rest frame of the point particle, while p and
m are the moments when the particle has velocity v in the lab frame. However, the fields
associated with an electric and/or magnetic dipole moving at low velocity are not simply the
instantaneous fields of the moments p and m, which leads to ambiguities in interpretations
of the physical significance of the dipole moments p and m in the lab frame.

In sec. III of [32] it is claimed that the magnetic moment of a point electric dipole p0

which moves with velocity v is

m = − v

2c
× p0, (5)

which differs from eq. (4) by a factor of 2. Additional support for this form appears to be
given in probs. 6.21, 6.22 and 11.27 of [33]. The relation (5) (and an infinite set of other
definitions) can be used (with care) in the lab frame, but we use the convention of eq. (4) in
the following.

As discussed in sec. 2.3, the forces and torques experienced by moving moments in the lab
frame are not equal to those that might be expected on the lab-frame values of moments p
and m. This situation is somewhat anomalous in the theory of relativity, and it is therefore
not surprising that it has led to various confusions over the years, apparently beginning with
the Trouton-Noble experiment [34].

The approach taken in the rest of this note is that consistent results in the lab frame are
best obtained by transformation of the corresponding results in the rest frame of the system.

2.2 The External Field is Due to a Single Distant Charge

Suppose that the external field E0 = E0 x̂ near the dipole is due to a single charge q at
x = −d0 for large d0 (in the rest frame).

10The relation that p ≈ v/c×m0 when p0 = 0 appears in eq. (13) of [28], which was inspired by sec. 600
of [29]. See also [30]. That a moving current leads to an apparent charge separation was noted in [31].

11Ref. [27] recounts a past controversy that these transformations might involve the index n if the magnetic
dipole were not equivalent to an Ampèrian current loop.
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In the lab frame we might argue that the force on q is due to both the electric field from
the apparent electric dipole p ≈ v/c × m0 and the magnetic field of the magnetic moment
m ≈ m0,

Fq
?
= q

(
Ep +

v

c
× Bm

)
≈ q

(
− p

d3
0

+
v

c
× −m0

d3
0

)
= −2q

v

c
× m0

d3
0

= −2qvm0

d3
0

ŷ. (6)

How can this be, as the force on the charge is zero in the rest frame, and 3-force is invariant
under low-velocity transformations? Is the Lorentz force law incompatible with relativity?

The issue is that the fields of a dipole moving at low velocity are not the same as the
(instantaneous) fields of the moments obtained by transformation of the moments from their
rest frame. That is, the meaning of a moving dipole must be considered with care.

The proper calculation is that

Fq = q
(
E +

v

c
× B

)
, (7)

where E and B are the Lorentz transformations of the fields of the magnetic moment m0 in
its rest frame, where

Em = 0, Bm = −m0

d3
0

, (8)

at charge q. The (low-velocity) transforms of these to the lab frame are

E ≈ Em − v

c
×Bm = −v

c
× Bm, B ≈ Bm +

v

c
×Em = Bm. (9)

Using these in eq. (7) we find Fq = 0 as expected (and that the Lorentz force law works
fine).

It remains disconcerting that the electric field in the lab frame at charge q is the negative
of that inferred from the relation p ≈ v/c×m0. For additional discussion of these matters,
see [2], particularly sec. 3.

2.3 Torque in the Lab Frame

2.3.1 A Näıve Analysis

To calculate the torque on the dipole in the lab frame, we might presume that the appar-
ent electric dipole moment p ≈ v/c × m0 can be associated with charges ±Q with small
separation, such that p = Q(r+ − r−). In this case, we could write (following [5])

τ p
?
= r+ × Q

(
E +

v

c
×B

)
+ r− ×−Q

(
E +

v

c
× B

)
= Q(r+ − r−) ×

(
E +

v

c
× B

)

= p ×E + p×
(v

c
× B

)
, (10)

in the limit of a point dipole. Similarly, if the moving particle has magnetic dipole m in the
lab frame, it seems reasonable (again following [5]) that the partial torque τ p due to external
E and B fields can be deduced by supposing that the dipole consists of a pair of magnetic
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charges ±Qm subject to the Lorentz force Qm(B − v/c × E), which leads (in the limit of a
point dipole) to

τ m
?
= r+ × Qm

(
B − v

c
× E

)
+ r− ×−Qm

(
B− v

c
× E

)
= Qm(r+ − r−) ×

(
B − v

c
× E

)

= m ×B − m ×
(v

c
× E

)
. (11)

The total torque (in case of a Gilbert magnetic dipole) is then

τ = τ p + τm

?≈ p× E + m ×B + p ×
(v

c
×B

)
− m ×

(v

c
×E

)
. (12)

In the present example, the external electric field in the lab frame is just E ≈ E0 to order
v/c, and the external magnetic field is B ≈ −v/c × E0 ≈ −v/c × E. Also, the magnetic
moment is m0 and the electric dipole moment is p ≈ v/c × m0 in this frame, to order v/c.
Then, to this order, the total torque on the moving dipole is

τ
?≈ p× E − m×

(v

c
× E

)
. (13)

While this computation of the torque is not equal to p× E in general, it does equal this if
v is parallel to E (or if m0 is parallel to v × E).

2.3.2 Analysis via Transformation of Torque from the Rest Frame

However, a lesson of secs. 2.1-2 is that computations in the lab frame involving the apparent
dipole moments p and m (in that frame) may give invalid results. Furthermore, we desire an
analysis for an Ampèrian magnetic dipole. A better procedure is to transform computations
in the rest frame to the lab frame.

For this, it is insightful to consider the (antisymmetric) torque tensor

τμν =

∫
(rμfν − rνfμ) dVol =

∑
rμFν − rνFμ, (14)

where rμ = (ct, r), the Lorentz 4-force density is fμ = (J · E/c, ρE + u/c × B) for a system
with charge-current-density 4-vector (cρ,J), and the Lorentz 4-force is Fμ = γu(F · u/c,F)

for a system of particles with velocities u and γu = 1/
√

1 − u2/c2

The torque 3-vector τ 0 = (τ 23,−τ13, τ12) on a general dipole with electric-charge dipole
moment p0 and Ampèrian magnetic moment (due to electrical currents) m0 in its rest frame
is

τ 0 =

∫
r0 ×

(
ρ0E0 +

J0 × B0

c

)
dVol0

=

∫
ρ0r0 dVol0 × E0 +

∫
(r0 · B0)J0 − (r0 · J0)B0

c
dVol0

= p0 × E0 + m0 × B0, (15)

noting that for steady current J0,∫
r0 · J0 dVol0 =

∑
n

qnr0n · u0n =
1

2

d

dt

∑
n

qnr
2
0n = 0, (16)
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and∫
(r0 · B0)J0

c
dVol0 =

∑
n

qn(r0n · B0)u0n

c

=
∑

n

qn(r0n · B0)u0n

2c
−

∑
n

qn(u0n · B0)r0n

2c
+

1

4c

d

dt

∑
n

qn(r0n · B0)r0n

=
∑

n

qn(r0n × u0i)

2c
× B0 = m0 × B0, (17)

where the magnetic moment in the rest frame is

m0 =
∑

n

qn(r0n × u0n)

2c
=

∫
r0 × J0

2c
dVol0. (18)

The rest-frame torque tensor also has components

τ 0,0i = −τ0,i0 = ct0

∫
f0,i dVol −

∫
r0,i(J0 · E0)

c
dVol = [m0 ×E0]i, (19)

for a system subject to zero total Lorentz force,
∫

f0 dVol = 0, noting that
∫

r0(J0 · E0)

c
dVol0 =

∑
n

qn(u0n · E0)r0n

c

=
∑

n

qn(u0n · E0)r0n

2c
−

∑
n

qn(r0n · E0)u0n

2c
+

1

4

d

dt

∑
n

qn(r0n · E0)r0n

= −
∑

n

qn(r0n × u0n)

2c
×E0 = −m0 × E0. (20)

The result (19) may be surprising, in that for a case like the present example, in which the
rest-frame 3-torque (15) is zero, the 4-torque is non-zero, and consequently the 3-torque is
nonzero in other frames.12 This peculiar result holds only for a particle with an (Ampèrian)
magnetic dipole moment due to electric currents. If the magnetic dipole consisted of a pair
of opposite magnetic charges (Gilbert dipole), τ0,0i would be zero (assuming that the system
does not have a magnetic current loop and associated Gilbertian electric dipole moment).
Hence, the torque on a moving magnetic dipole in an external electric fields provides a classical
distinction between Ampèrian and Gilbertian moments (which distinction is often considered to
be relevant only in the quantum domain).

For low velocities of the lab frame we have that

r ≈ r0 + vt, dVol ≈ dVol0, (21)

ρ ≈ ρ0 +
J0 · v

c2
, J ≈ J0 + ρ0v, (22)

E ≈ E0 − v

c
× B0, B ≈ B0 +

v

c
× E0. (23)

12This effect invalidates a claim in [35] that if the 3-torque τ is zero in one (inertial) frame it is zero in
all (inertial) frames.
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Hence, the lab-frame Lorentz force density is related to that in the rest frame by

ρE +
J

c
× B ≈ ρ0E0 +

J0

c
×B0 +

(J0 · E0)v

c2
, (24)

which can be confirmed explicitly using eqs. (22)-(23).13

The lab-frame 3-torque at time t = 0 is thus,

τ =

∫
r×

(
ρE +

J × B

c

)
dVol

≈ τ 0 +

∫
r × (J0 · E0)v

c2
dVol ≈ τ 0 +

∫
r0(J0 · E0)

c
dVol0 × v

c

= p0 × E0 + m0 × B0 +
v

c
× (m0 × E0) (26)

recalling eqs. (15) and (20).
We can express the lab-frame torque in terms of lab-frame quantities using eq. (4),

τ ≈ p0 × E0 + m0 × B0 +
v

c
× (m0 × E0)

≈
(
p− v

c
× m

)
×

(
E +

v

c
×B

)
+

(
m +

v

c
× p

)
×

(
B − v

c
× E

)

+
v

c
×

[(
m +

v

c
× p

)
×

(
E +

v

c
× B

)]

≈ p× E + m × B + p×
(v

c
× B

)
− B ×

(v

c
× p

)
+ E ×

(v

c
× m

)
− m×

(v

c
× E

)

+
v

c
× (m × E)

= p× E + m × B +
v

c
× (p× B) (Ampèrian magnetic dipole), (27)

noting the identity that a× (b×c) = b× (a×c)−c× (a×b). This result differs somewhat
from that of eq. (12).14

In the rest frame of the present example the 3-vector τ 0, eq. (15), is zero, while to order
1/c2 the lab-frame 3-torque is

τ ≈ p× E (present example, Ampèrian magnetic dipole), (28)

13We could also represent the Lorentz force density in terms of polarization densities P and M, replacing
ρ by −∇ ·P and J by ∂P/∂t+ c∇×M, where we can associate the electric and magnetic dipole moments p
and m of a “point” particle at the origin with “free” polarization densities P and M according to P = p δ3(r)
and M = m δ3(r). These relations are best established first in the rest frame, where P0 = p0 δ3(r0) and
M0 = m0 δ3(r0). and then transforming to the lab frame via eq. (3), with the result for low velocities,

P ≈ P0 +
v
c
×M0 =

(
p0 +

v
c
× m0

)
δ3(r), M = M0 − v

c
×P0 =

(
m0 − v

c
× p0

)
δ3(r). (25)

Then, the inverse relations p =
∫

P dVol and m =
∫

M dVol are consistent with eq. (4).
See [36, 37] for use of this approach for the present example.
14Mansuripur states without apparent derivation in either [7] or [38] that τ = p×E+m×B for a system

on which the total force F is zero.
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since B = 0 here. This confirms the existence of a nonzero lab-frame torque in the present
example, so paradox remains as its physical significance in case of an Ampèrian magnetic
dipole.

If instead the magnetic dipole m0 were made from opposite magnetic charges (and the
electric dipole p0 is made from opposite electric charges), then τ 0,0i = 0, and the lab-frame
3-torque is given by

τ = τ 0 = p0 ×E0 + m0 ×B0

≈ p× E + m× B +
v

c
× (p× B − m × E) (Gilbert magnetic dipole). (29)

Thus, the näıve computation (12) is slightly wrong in general, which further illustrates the
difficulty in interpreting lab-frame dipole moments.

In the rest frame of present example the torque 4-tensor is zero (for a Gilbert magnetic
dipole), so this tensor is also zero in the lab frame, as is the lab-frame 3-torque,15

τ = 0 (present example, Gilbert magnetic dipole). (30)

Mansuripur’s paradox vanishes for the case of a Gilbert magnetic dipole, but remains for an
Ampèrian one.

2.3.3 Transformation in Two Steps

An analysis that uses rest-frame and lab-frame quantities in the same steps can be given
by supposing that the moments in eqs. (10)-(11) are those in the rest frame (and that the
magnetic moment is Gilbertian), while the positions, velocities and fields are those in the lab
frame [5]. This analysis can be regarded as a partial transformation of the analysis in the
rest frame (ignoring possible nonzero components τ 0i in that frame), in which the positions
and fields are transformed to the lab frame, but the moments are not transformed. In this
hybrid view, the lab-frame torques are

τ p = p0 × E + p0 ×
(v

c
×B

)
, τm = m0 ×B − m0 ×

(v

c
×E

)
. (31)

In the present example, p0 and B are zero, while v ‖ E, so the total torque τ = τ p + τm in
the lab frame is zero, according to eq. (31).

We can complete the partial transformations of eq. (31), recalling eq. (4),

τ p ≈
(
p− v

c
× m

)
×E + p×

(v

c
× B

)
, (32)

τ m =
(
m +

v

c
× p

)
× B − m ×

(v

c
×E

)
. (33)

15In Mansuripur’s example, B = 0 in the lab frame where p = v/c × m, so eq. (29) becomes τ =
p × E − v/c × (m × E) = (v · m)E/c − (E · m)v/c = 0, since E and v are parallel to one another and
perpendicular to m.
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Using the identity that a × (b× c) = b× (a × c) − c × (a × b) the total torque in the lab
frame can be written as

τ = τ p + τm ≈ p× E + m × B +
v

c
× (p× B −m × E) (Gilbert magnetic dipole).(34)

as previously found in eq. (29), where all quantities in this expression are in the lab frame.16

The torque (34) vanishes in the present example where B = 0, m ≈ m0, p ≈ v/c × m0

and v ‖ E.

2.4 Field Momentum and “Hidden” Mechanical Momentum in

the Rest Frame

The example of Mansuripur contains an additional subtlety that deserves comment. Namely,
even in its rest frame the system possesses nonzero electromagnetic field momentum PEM.17

For systems in which effects of radiation and of retardation can be ignored, the electro-
magnetic momentum can be calculated in various equivalent ways [40],

PEM =

∫
�A

c
dVol =

∫
E × B

4πc
dVol =

∫
V J

c2
dVol, (35)

where � is the electric charge density, A is the magnetic vector potential (in the Coulomb
gauge where ∇ · A = 0), E is the electric field, B is the magnetic field, V is the electric
(scalar) potential, and J is the electric current density. The first form is due to Faraday [41]
and Maxwell [42], the second form is due to Poynting [43], Poincaré [44] and Abraham [45],
and the third form was introduced by Furry [46].

Since a system at rest must have zero total momentum [20], it must also possess a
“hidden” mechanical momentum Phidden equal and opposite to the field momentum.18 This
“hidden” momentum is a “relativistic” effect of order 1/c2.19,20,21

We evaluate PEM for a magnetic moment m0 = πa2I ẑ/c due to current I which flows in
a circular loop of radius a subject to external electric field E0 that makes angle α to m, i.e.,

16Thus, the argument in [5] applies to a Gilbert dipole but not to an Ampèrian dipole, as noted in [39].
This argument is not self-evidently correct to this author, so this section provided the validation needed (in
my view).

17This is also true for the configuration of the Aharonov-Bohm effect [18].
18For commentary on “hidden” momentum by the author, see [47].
19The electromagnetic field momentum PEM is also an effect of order 1/c2 in that the vector potential A

and the magnetic field B are of order 1/c, so all three forms of eq. (35) are of order 1/c2.
20As pointed out by Griffiths [39], and earlier by Haus [48], classical systems with nonzero “hidden”

mechanical momentum must have moving parts. If magnetic charges existed, a system of static electric and
magnetic charges would have no “hidden” mechanical momentum, and its total field momentum must also
be zero, as explicitly verified in [39] for simple systems including dipoles. For example, a Gilbertian magnetic
dipole involves no electric current, so eq. (36) would give zero field momentum, and hence zero “hidden”
mechanical momentum.

21Mansuripur [38] denies the existence of “hidden” mechanical momentum, while apparently accepting
the usual relations (35) for electromagnetic field momentum. This view seems to be based on the use of
the Abraham rather than Minkowski field momentum, and the mistaken belief that all magnetic dipoles
can be represented via a (quantum) magnetization density. Mansuripur may have been led to this view by
his emphasis of the so-called Einstein-Laub force density [10] (which is more consistent with the Gilbertian
result (34), as shown by Cross [37]).
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E0 = E0(sinα x̂ + cos α ẑ). The largest magnetic field is inside the loop, in the ẑ direction,
so the second form of eq. (35) indicates that PEM will be in the −ŷ direction. This result
is counterintuitive in that the direction of the momentum is not related to the direction of
the velocity (if any). In the present problem PEM is perpendicular to v, so the field angular
momentum (39) is nonzero and position/time dependent for motion along the x-axis.

We use the third form of eq. (35) to compute the field momentum. The external electric
field can be derived from the scalar potential V = −E0(x sinα+z cosα),and the y-component
of J dVol is Ia cosφdφ in cylindrical coordinates (ρ, φ, z) centered on the moment. Then,
noting that x = a cosφ and z = 0 on the loop, we find

PEM,y =

∫
V Jy

c2
dVol =

∫ 2π

0

(−E0a cosφ sin α)(Ia cosφ)

c2
dφ = −πa2IE0 sinα

c2
= −m0E0 sinα

c
.

(36)
That is,22

PEM =
E0 × m0

c
(Ampèrian magnetic dipole). (37)

As the total momentum of the system at rest must be zero, we infer that there exists
“hidden” mechanical momentum given by

Phidden = −PEM = −E0 × m0

c
. (38)

The momenta (37)-(38) are effects of order 1/c2. See, for example, [49] for a classical model
of the “hidden” momentum (38).

2.5 Torque and Changing “Hidden” Angular Momentum

A classical (Ampèrian) magnetic moment m0 has intrinsic mechanical angular momentum
L0 = 2Mcm0/Q where M and Q are the mass and charge of the particles whose motion
generates the moment. In addition, the moment is associated with “hidden” mechanical
angular momentum given by

Lhidden = r × Phidden, (39)

where r is the position of the center of the moment.
In the inertial frame where the magnetic moment has position r = vt = vt x̂, with v � c

(such that the electric field and the moment have the same values as in the moment’s rest
frame to order v/c, and the field momentum and the “hidden” mechanical momentum have
their rest-frame values to order 1/c2), the mechanical angular momentum of the system is23

Lmech = L0 + Lhidden ≈ L0 − vt × E× m0

c
. (40)

22The result (37) first appeared in eq. (37) of [46].
23The intrinsic mechanical angular momentum L0 has corrections at order v2/c2, but these are time-

independent in the lab frame.
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To support this time-varying mechanical angular momentum, we expect from classical
mechanics that the system must be subject to a torque,

τ =
dLmech

dt
≈ −v × E × m0

c
. (41)

When E and v are parallel, we can rewrite eq. (41) as

τ = −E × v × m0

c
= p× E (present example, Ampèrian magnetic dipole). (42)

This equals the lab-frame torque (28) (for v ‖ E) computed in sec. 2.3.2 via transformation
from the rest frame, and the “paradoxical” torque is needed to “cause” the changes in the
lab-frame “hidden” mechanical angular momentum.24

There also exists the electromagnetic field angular momentum

LEM = r × PEM = −Lhidden, (43)

whose time rate of change is equal and opposite to that of the “hidden” mechanical angular
momentum,

dLEM

dt
= −dLhidden

dt
. (44)

We can say that the “torque” −dLhidden/dt “causes” the change in LEM.

2.5.1 Flow of Field Momentum and Angular Momentum

As first noted by Poincaré [44], an electromechanical system contains densities pmech of
mechanical momentum as well as

pEM =
S

c2
=

E × B

4πc
(45)

of electromagnetic field momentum (in media where E = D and B = H as in the present
example). Changes in these momentum densities can be related to a force density f which
is the divergence of a stress tensor T,

f = ∇ · T =
∂pEM

∂t
+

∂pmech

∂t
, (46)

where the stress tensor can be written as the sum of mechanical and electromagnetic stress
tensors,

T = Tmech + TEM, (47)

with

TEM
ij =

EiEj + BiBj

4π
− δij

E2 + B2

8π
, (48)

24Essentially similar arguments have been given by Griffiths and Hnizdo [36], by Cross [37], by Vanzella
[50], and by Saldanha [51]. Since eq. (28) was deduced from the Lorentz force law, this law is not brought
into doubt by the present example, contrary to the claim in [7].
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which is often called the Maxwell stress tensor. Outside of matter, where the density pmech

and the tensor Tmech are zero, eq. (46) can be written as

∂pEM

∂t
− ∇ · TEM = 0 (outside matter), (49)

which indicates that the (tensor) flux of electromagnetic momentum pEM is given by −TEM

in “empty” space.25

We define the densities of electromagnetic and mechanical angular momenta as

lEM = r × pEM, lmech = r × pmech. (50)

Then, the vector moment of eq. (46) leads to the relation

r × f = r ×∇ · T = ∇ · r × T =
∂lEM

∂t
+

∂lmech

∂t
, (51)

where the cross product r × T involves only the second index of T, and the i component of
r × ∇ · T is, noting that the tensor T is symmetric,

r× ∇ · T|i = εijkxj
∂Tlk

∂xl
=

∂

∂xl
εijkxjTlk = ∇ · r × T|i . (52)

See, for example, [53].
Outside of matter the density lmech is zero, and eq. (51) can be written as

∂lEM

∂t
−∇ · r × TEM = 0 (outside matter), (53)

which indicates that the tensor −r×T (whose components are −εiklxkTjl) equals the (tensor)
flux of the density lEM of electromagnetic angular momentum in “empty” space.

We can regard the changes in the lab-frame electromagnetic-angular-momentum density
as due to the flux of angular momentum, described by the tensor r×TEM, out from the time-
dependent “hidden” mechanical angular momentum in the currents of the moving magnetic
moment.26

2.6 Electric Dipole in an External Magnetic Field

In the complementary example of a “point particle” with electric dipole moment p0 at rest
in a constant, uniform magnetic field B0 there is no torque on the particle in either the rest
frame or in a lab frame that has low velocity v parallel to B0, recalling eq. (26).

If the magnetic field were due to a distant magnetic monopole, there would be no “hidden”
mechanical momentum in the system, as noted in [39]. Hence there would be no changing

25Another interpretation of eq. (49) is that the force density ∇·TEM “causes” the time rate of change of the
electromagnetic-momentum density pEM. Such interpretation is delicate in that ∇ ·TEM = ∂(E×B)/4πc ∂t,
so eq. (49) is more of a tautology than a cause/effect relation.

26The torque density r × f can be said to “cause” the changes in the densities lEM and lmech of electro-
magnetic and mechanical angular momenta. However, this interpretation has the same delicacy discussed in
the previous footnote.
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“hidden” mechanical angular momentum in the lab frame, and no torque would be needed
there.

In a more realistic example the magnetic field is due to electrical currents in, say, an
Ampèrian magnetic dipole. In this case the system at rest possesses nonzero electromagnetic
field momentum PEM = B0×p0/2c [52]. The “hidden” mechanical momentum of the system
is the negative of this, and in the lab frame the time rate of change of the corresponding
“hidden” mechanical angular momentum is dLhidden/dt = −v×(B0×p0/2c) = −vp0B0 ẑ/2c,
for moment p0 in the z-direction and B0 and v in the x-direction.

It may appear paradoxical that the “hidden” mechancial angular momentum is time
dependent in the lab frame, but there is no torque there on the dipole.

However, we should also consider the effect of the fields of the electric dipole on the
source of the external magnetic field. For example, suppose the magnetic field B0 = B0 x̂
at the origin is due to a current loop at x = −d0 on the x-axis with (Ampèrian) magnetic
moment m0 = B0d

3
0 x̂/2. If the electric dipole at the origin has moment p0 = p0 ẑ, then the

electric field on the magnetic moment is E = −p0/d
3
0. The torque on the magnetic moment

in the lab frame follows from eq. (26) as τ ≈ v/c× (m0 ×E) = −vm0E ẑ/c = −vp0B0 ẑ/2c.
This torque equals the time rate of change of the “hidden” mechanical angular momentum
found above, so the absence of a lab-frame torque on the electric dipole at the origin (at
time t = 0) in this example is not paradoxical.27

2.7 Physical Realizations of Magnetic Moments

The behavior of a moving current loop in an external electric field depends on the physical
nature of the current.

If the current flows in a resistive conductor, that conductor would “shield” the current
from a constant, uniform external electric field E if the conductor is at rest or in uniform
motion with respect to the field. In this case there would be no Lorentz force on the current
due to the external field, and no torque in the frame where the current loop has velocity v.

Similarly, if the current loop is a superconductor, the supercurrent is “shielded” from the
external field, and there is no torque.

A model of a neutral current loop that could realize Mansuripur’s paradox is a pair of
nonconducting, coaxial disks with positive charge fixed to the rim of one and negative charge
on the other, with the disks rotating in opposite senses with the same magnitude of angular
velocity. The paradox applies also to models in which the current is a charged, compressible
gas or liquid that flow inside a nonconducting tube (models i and iii of [6]).28

In sum, the present example can be realized only in rather “academic” thought experi-
ments if the magnetic momenent is due to conduction current loops.

The most practical realization of the present example would involve magnetic fields due

27A delicate point is that the electromagnetic field momentum of the magnetic dipole in the electric field
of the electric dipole is PEM = E × m0/c, which equals field momentum B0 × p0/2c of the electric dipole
in the field of the magnetic dipole. These are not different momenta, but two computations of the field
momentum of the system. See [52] for a computation in which the magnetic field is due to a long solenoid
magnet.

28To have an electrically neutral current loop, one must postulate a pair of such tubes that containing
opposite charged gas/liquid flowing in opposite directions.
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to intrinsic (Ampèrian) magnetic momentums, such as associated with a nonconducting
permanent magnet, or a neutron.
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[10] A. Einstein and J. Laub, Über die elektromagnetishen Grundgleichungen für bewegte
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