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1 Problem

Give expressions for the potentials of a Hertzian (point) oscillating dipole in various gauges.

2 Solution

The form of Maxwell’s equations for the fields E and B permit these fields to be related to
potentials V and A according to,

E = −∇V − 1

c

∂A

∂t
, B ∇ × A, (1)

in Gaussian units, where c is the speed of light in vacuum, and the potentials obeys the wave
equations,

∇2V +
1

c

∂

∂t
∇ ·A = −4π�, ∇2A− 1

c2

∂2A

∂t2
= −4π

c
J + ∇

(
∇ · A +

1

c

∂V

∂t

)
, (2)

in terms of source charge and current densities � and J.
Using the Lorenz-gauge condition [1],

∇ · A(L) =
1

c

∂V (L)

∂t
, (3)

the potentials obey the wave equations

∇2V (L) − 1

c2

∂2V (L)

∂t2
= −4π�, ∇2A(L) − 1

c2

∂2A(L)

∂t2
= −4π

c
J. (4)

The solutions to these wave equations are the famous retarded potentials of Lorenz [1] and
Riemann [2].

2.1 From Potentials in the Lorenz Gauge to Those in Any Other
Gauge

As deduced in eq. (16) of [3], a formal expression for the vector potential in the any other
gauge is given in terms of the Lorenz-gauge potentials, and the scalar potential in the other
gauge, as

A(r, t) = A(L) + ∇χ = A(L)(r, t) + c∇
∫ t

−∞
{V (L)(r, t′) − V (r, t′)} dt′

= A(L)(r,−∞)− c

∫ t

−∞
{E(r, t′) + ∇V (r, t′)} dt′, (5)
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where c is the speed of light in vacuum.
We first review the potentials in the Lorenz gauge [1] (see, for example, Chap. 9 of [4]),

and then transform these into other gauges following the prescription (5).

2.2 Potentials of a Hertzian Dipole in the Lorenz Gauge

This section follows [5].
We consider a time-dependent point electric dipole p = p0 e−iωt, centered at the origin,

as defined by
p(t) = lim

q→∞, d→0, qd=p
q(t)d, (6)

for which the associated electric charge density ρ can be written

�(r, t) = lim
q→∞, d→0, qd=p

q(t){δ3(r − d/2) − δ3(r − d/2)} = p(t) · ∇δ3(r). (7)

The current density J is related by the equation of continuity,

∇ · J(r, t) = −∂�(r, t)

∂t
= ṗ(t) · ∇δ3(r) = ∇ · {ṗ(t)δ3(r)}, (8)

so that
J(r, t) = ṗ(t)δ3(r). (9)

The retarded (Lorenz-gauge) scalar potential V (L) is given by

V (L)(r, t) =

∫
�(r′, t′ = t − |r − r′| /c)

|r − r′| d3r′ =

∫
p(t′) · ∇δ3(r′)

|r − r′| d3r′

= −
∫

δ3(r′)∇ · p(t′)
|r − r′| d3r′ = −∇ · p(t′ = t − r/c)

r

=
[p] · r

r3
+

[ṗ] · r
c r2

, (10)

where we write a retarded quantity f(t − r/c) as [f ], and note that ∇r = r/r and

∇ · p(t − r/c) = − [ṗ]

c
· ∇r = − [ṗ] · r

c r
. (11)

Similarly, the retarded vector potential A is given by

A(L)(r, t) =

∫
J(r′, t′ = t − |r − r′| /c)

c |r − r′| d3r′ =

∫
ṗ(t′)δ3(r′)
c |r − r′| d3r′ =

[ṗ]

c r
. (12)

For an oscillating dipole, p = p0 e−iωt, [p] = p0 ei(kr−ωt) = p eikr, and the Lorenz-gauge
potentials are spherical waves with speed c = ω/k,

V (L)(r, t) = p · r eikr

(
1

r3
− ik

r2

)
= p0 · r ei(kr−ωt)

(
1

r3
− ik

r2

)
, (13)

A(L)(r, t) = −ik p
eikr

r
= −ik p0

ei(kr−ωt)

r
. (14)
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If we are primarily interested in the fields and potentials far from the dipole, and keep
only terms that vary as 1/r, we have that

V
(L)
far = −ikp0 · r̂ ei(kr−ωt)

r
, A

(L)
far = A(L) = −ik p0

ei(kr−ωt)

r
. (15)

2.3 Electric and Magnetic Fields

The electric and magnetic fields E and B are obtained from the retarded potentials according
to

E = −∇V (L) − 1

c

∂A(L)

∂t
and B = ∇ × A(L), (16)

noting that ∇ × r = 0,

∇ × p(t − r/c) = −∇r

c
× [ṗ] = − r

c r
× [ṗ], . (17)

and

∇([p] · r) = ([p] ·∇)r + (r · ∇)[p] + [p] × (∇ × r) + [r× (∇ × p])

= [p] − [ṗ]
r

c
+ 0 + [ṗ]

r

c
− ([ṗ] · r) r

c r
= [p] − ([ṗ] · r) r

c r
(18)

Thus,

E = −∇ [p] · r
r3

−∇ [ṗ] · r
cr2

− 1

c

∂

∂t

[ṗ]

cr

= − 1

r3
∇([p] · r) − ([p] · r)∇ 1

r3
− 1

cr2
∇([ṗ] · r) − ([ṗ] · r)∇ 1

cr2
− [p̈]

c2r

= − [p]

r3
+

([ṗ] · r̂)r̂
cr2

+ 3
([p] · r̂)r̂

r3
− [ṗ]

cr2
+

([p̈] · r̂)r̂
c2r

+ 2
([ṗ] · r̂)r̂

cr2
− [p̈]

c2r

=
([p̈] × r̂) × r̂

c2r
+

3([ṗ] · r̂)r̂ − [ṗ]

cr2
+

3([p] · r̂)r̂ − [p]

r3
, (19)

and

B = ∇ × [ṗ]

cr
=

1

cr
∇ × [ṗ] +

(
∇ 1

cr

)
× [ṗ] = − r̂

c2r
× [p̈] − r̂

cr2
× [ṗ], (20)

The fields for an oscillating dipole are

E = k2(p − (p · r̂)r̂) eikr

r
+ (3(p · r̂)r̂ − p)

(
1

r3
− ik

r2

)
eikr

= k2(p0 − (p0 · r̂)r̂) ei(kr−ωt)

r
+ E0(r) (1 − ikr) ei(kr−ωt), (21)

where

E0(r) =
3(p0 · r̂) r̂ − p0

r3
(22)
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is the static field of electric dipole p0, and

B = k2 r̂ × p

(
1 +

i

kr

)
eikr

r
= k2 r̂ × p0

(
1 +

i

kr

)
ei(kr−ωt)

r
, (23)

which are also spherical waves with propagation speed c.
Far from the dipole,

Bfar = k2 r̂ × p0
ei(kr−ωt)

r
, Efar = Bfar × r̂. (24)

2.4 Gibbs Gauge

A gauge in which the prescription (5) readily applies is where the scalar potential is defined
to be zero, V (G) = 0, such that E = −∂A(G)/∂ct, as first proposed by Gibbs [6, 7].1

Since the Gibbs-gauge vector potential is an integral of the electric field, A(G)(t) =
−c

∫ t

t0
E(t′) dt′, this potential propagates at speed c. However, it differs from the Lorenz-

gauge vector potential. Since ∇ · E = 4πρ = −∂∇ · A(G)/∂ct, the Gibbs-gauge vector
potential obeys ∇ · A(G) = 0 away from charged particles (whereas the Coulomb-gauge
vector potential obeys ∇ · A(C) = 0 everywhere).2

As the Gibbs-gauge scalar potential V (G) is zero, the Gibbs-gauge vector potential can
be computed via

E = −∇V (G) − 1

c

∂A(G)

∂t
= ikA(C). (25)

Thus, using eqs. (21),

A(G) =
E

ik
= −ik (p− (p · r̂)r̂) eikr

r
− (3(p · r̂)r̂ − p)

(
i eikr

kr3
+

eikr

r2

)

= ik(p0 × r̂) × r̂
ei(kr−ωt)

r
−

(
r +

i

k

)
E0(r) ei(kr−ωt), (26)

Far from the dipole, the potentials in the Gibbs gauge are,

V
(G)
far = 0, A

(G)
far = ik(p0 × r̂) × r̂

ei(kr−ωt)

r
. (27)

1Apparently the Gibbs gauge is also called the Hamiltonian or temporal gauge, as mentioned in sec. VIII
of [8]. That is, the Gibbs gauge is handy in examples where the electric field is known, and the vector
potential is needed for use in the Hamiltonian of the system, expressed in terms of canonical momenta of
charges q as pcanonical = pmech + qA/c.

2The distinction between ∇ · A in the Coulomb and Gibbs gauges is slight, and may be why Gibbs
thought [6] that his new gauge was the Coulomb gauge used by Maxwell.

4



2.4.1 Gibbs-Gauge Potential from the Lorenz Gauge

The gauge-transformation function χ of eq. (5) is, using eqs. (13) and (32),

χ(L→G) = c

∫ t

−∞
{V (L)(r, t′) − V (G)(r, t′)} dt′ = c

∫ t

−∞
p(t′) · r eikr

(
1

r3
− ik

r2

)
dt′

= ip · r eikr

(
1

kr3
− i

r2

)
. (28)

We can now obtain the Gibbs-gauge vector potential from that in the Lorenz gauge via
eq. (5),

A(G) = A(L) + ∇χ(L→G) = −ik p
eikr

r
+ i∇

(
p · r eikr

(
1

kr3
− i

r2

))
− i∇p · r

kr3

= −ikp
eikr

r
− (p · r̂) r̂ eikr

(
1

r2
− ik

r

)
− i

3(p · r̂) r̂ − p

kr3
eikr + (p− 2(p · r̂) r̂)e

ikr

r2

= ik((p · r̂)r̂ − p)
eikr

r
− (3(p · r̂)r̂ − p)

(
i eikr

kr3
+

eikr

r2

)
. (29)

This is the same as eq. (26), which further validates the transformation (5).

2.4.2 Potential in Any Gauge from That in the Gibbs Gauge

According to eq. (5), the vector potential in the Gibbs gauge is

A(G)(r, t) = A(L)(r, t) + c∇
∫ t

−∞
V (L)(r, t′) dt′, (30)

so that the vector potential in any other gauge, where the scalar potential is V , can be
written as

A(r, t) = A(L)(r, t) + c∇
∫ t

−∞
{V (L)(r, t′) − V (r, t′)} dt′

= A(G) − c∇
∫ t

−∞
V (r, t′) dt′. (31)

That is, if the vector potential in Gibbs gauge in known, this provides an even simpler
prescription than eq. (5) for the vector potential in another gauge.

2.5 Coulomb Gauge

The Coulomb-gauge scalar potential is

V (C)(r, t) =

∫
ρ(r′, t)

r
dVol′ =

∫
p · ∇δ3(r)

r
dVol′ =

p · r
r3

. (32)

The Coulomb-gauge vector potential can be computed via

E = −∇V (C) − 1

c

∂A(C)

∂t
= −∇V (C) + ikA(C). (33)
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Thus, using eqs. (21) and (32),

A(C) =
E + ∇V (C)

ik
= −ik(p− (p · r̂)r̂) eikr

r
− (3(p · r̂)r̂ − p)

(
i eikr

kr3
+

eikr

r2
− i

kr3

)

= ik(p0 × r̂) × r̂
ei(kr−ωt)

r
−

(
r +

i

k

)
E0 ei(kr−ωt) +

iE0

k
e−iωt. (34)

While the first two terms of the second line of eq. (34) are waves with propagation speed c,
the third term is instantaneous.

Since ∇ × E0 = 0, the magnetic field B = ∇ × A(C) propagates at speed c. Likewise,
the electric field E = −∇V (C) − ∂A(C)/∂ct = −∇V (C) + ikA(C) propagates at speed c, as
the term −∇V (C) is canceled by the third term in ikA(C) according to the form (46).

That is, the Coulomb-gauge vector potential A(C) always contains an instantaneous term
whose time derivative cancels the instantaneous term −∇V (C), such that the electric field
E propagates at speed c.3

Far from the dipole, the potentials are the same in the Coulomb gauge and the Gibbs
gauge,

V
(C)
far = V

(G)
far = 0, A

(C)
far = A

(G)
far = ik(p0 × r̂) × r̂

ei(kr−ωt)

r
. (35)

2.5.1 Coulomb-Gauge Vector Potential from the Lorenz-Gauge Potential

The gauge-transformation function χ of eq. (5) is, using eqs. (13) and (32),

χ(L→C) = c

∫ t

−∞
[V (L)(r, t′) − V (C)(r, t′)] dt′ = c

∫ t

−∞

[
p(t′) · r eikr

(
1

r3
− ik

r2

)
− p(t′) · r

r3

]
dt′

= ip · r eikr

(
1

kr3
− i

r2

)
− i

p · r
kr3

. (36)

We can now obtain the Coulomb-gauge vector potential from that in the Lorenz gauge via
eq. (5),

A(C) = A(L) + ∇χ(L→C) = −ikp
eikr

r
+ i∇

(
p · r eikr

(
1

kr3
− i

r2

))
− i∇p · r

kr3

= −ikp
eikr

r
− (p · r̂)r̂ eikr

(
1

r2
− ik

r

)
− i

3(p · r̂)r̂ − p

kr3
eikr + (p− 2(p · r̂)r̂)e

ikr

r2

+i
3(p · r̂)r̂ − p

kr3

= −ik(p− (p · r̂)r̂) eikr

r
− (3(p · r̂)r̂− p)

(
i eikr

kr3
+

eikr

r2
− i

kr3

)
. (37)

This is the same as eq. (34), which validates the transformation (5).
For another example of the use of eq. (5) to obtain the Coulomb-gauge vector potential,

see [13].

3This cancelation for the Coulomb-gauge potentials has been noted in [9, 10, 11, 12].
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2.5.2 Direct Computation of the Coulomb-Gauge Vector Potential

For comparison, we can also deduce the Coulomb-gauge vector potential using the classic
prescription4

A(C)(r, t) =

∫
[Jt]

c |r − r′| dVol′, (38)

where the transverse current density is defined by

Jt(r, t) =
1

4π
∇× ∇ ×

∫
J(r′, t)

c |r − r′| dVol′. (39)

The integral in eq. (39) is the nonretarded version of the Lorenz-gauge vector potential (13),∫
J(r′, t)

c |r − r′| dVol′ = − ikp(t)

r
. (40)

Hence,

∇ ×
∫

J(r′, t)
c |r − r′| dVol′ = ∇ × −ikp

r
=

r

r3
× ikp, (41)

and

Jt(r, t) =
1

4π
∇ × ∇ ×

∫
J(r′, t)

c |r − r′| dVol′ =
1

4π
∇ ×

( r

r3
× ikp

)
= − ik

4π

3(p · r̂)r̂ − p

r3
. (42)

Note that while the physical current associated with the point dipole is localized to the origin,
the (nonphysical) transverse current (42) is nonzero everywhere in space. The Coulomb-
gauge vector potentials is now given by eq. (38),

A(C)(r, t) =

∫
[Jt]

c |r − r′| dVol′ = − ik

4πc

∫
[3(p · r̂′) r̂′ − p]

|r − r′| r′3 dVol′

= − ik

4πc

∫
(3(p · r̂′) r̂′ − p) eikr′

|r − r′| r′3 dVol′. (43)

However, it is not straightforward to go from eq. (43) to (34).

2.5.3 Coulomb-Gauge Vector Potential from the Gibbs-Gauge Potential

We can also compute the vector potential in the Coulomb gauge, from that in the Gibbs
gauge according to the prescription (31),

A(C)(r, t) = A(G)(r, t)− c∇
∫ t

−∞
V (C)(r, t′) dt′. (44)

If the dipole moment oscillates according to p = p0 e−iωt,

c

∫ t

−∞
V (C)(r, t′) dt′ = c

(p0 · r̂)
r2

∫ t

−∞
e−iωt′ dt′ =

i

k

(p0 · r̂)
r2

e−iωt =
i

k
V (C)(r, t), (45)

4See, for example, sec. 6.3 of [4].
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taking the scalar potential at t = −∞ to be its average value of zero at large negative times,
such that the Coulomb-gauge vector potential is, recalling eq. (26),

A(C)(r, t) = ik(p0 × r̂) × r̂
ei(kr−ωt)

r
−

(
r +

i

k

)
E0 ei(kr−ωt) − i

k
∇V (C)(r, t)

= ik(p0 × r̂) × r̂
ei(kr−ωt)

r
−

(
r +

i

k

)
E0 ei(kr−ωt) +

iE0

k
e−iωt. (46)

The first two terms of eq. (46) propagate at speed c = ω/k, while the third term is instan-
taneous.

2.6 Static-Voltage Gauge

A variant of the Gibbs gauge is that the scalar potential is not zero, but rather is the
instantaneous Coulomb potential at some arbitrary time t0,

V (SV)(r, t) = V (C)(r, t0) =

∫
ρ(r′, t0)
|r − r′| dVol′. (47)

This is the static-voltage gauge [14], called the Coulomb-static gauge in [15].
From eq. (31), we see that the vector potential in the static-voltage gauge differs only

slightly from that in the Gibbs gauge,

A(SV)(r, t) = A(G)(r, t) − ct∇V (C)(r, t0). (48)

We can take the scalar potential in the static-voltage gauge to be that at time t0 = 0, so
for the present example,

V (SV)(r, t) = V (C)(t = 0) =
p0 · r
r2

. (49)

The vector potential in the static-voltage gauge is then given by eq. (48) as

A(SV)(r, t) = A(G)(r, t) − ct∇V (C)(t = 0) = A(G)(r, t) + ctE0(r)

= ik(p0 × r̂) × r̂
ei(kr−ωt)

r
−

(
r +

i

k

)
E0(r) ei(kr−ωt) + ctE0(r). (50)

Far from the dipole, the potentials are the same in the Coulomb gauge, the Gibbs gauge
and the static-voltage gauge,

V
(C)
far = V

(G)
far = V

(SV)
far = 0, A

(C)
far = A

(G)
far = A

(SV)
far = ik(p0 × r̂) × r̂

ei(kr−ωt)

r
. (51)

2.7 Kirchhoff Gauge

Kirchhoff [16] was apparently the first to define a gauge condition, writing

∇ · A(K) = −1

c

∂V (K)

∂t
, (52)
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which differs by a sign from the Lorenz-condition (3). Then, the wave equation (2) for the
scalar potential becomes, in the Kirchhoff-gauge,

∇2V (K) +
1

c2

∂2V (K)

∂t2
∇ · A = −4π�, (53)

which is the same as that in the Lorenz gauge, eq. (4), but with the substitution c → ic.
Hence, a formal solution for the Kirchhoff-gauge scalar potential is

V (K)(r, t) =

∫
�(r′, t′ = t − |r − r′| /ic)

|r − r′| d3r′ = −∇ · p(t′ = t − r/ic)

r

= p · r e−kr

(
1

r3
− k

r2

)
= p0 · r e−kr−iωt

(
1

r3
− k

r2

)
. (54)

We use eq. (31) to relate the vector potential in the Kirchhoff gauge to that in the Gibbs
gauge,

A(K)(r, t) = A(G)(r, t) − c∇
∫ t

−∞
V (K)(r, t0) = A(G)(r, t)− i

k
∇

(
p · r e−kr

(
1

r3
− k

r2

))

= ik((p · r̂) r̂ − p)
eikr

r
− (3(p · r̂) r̂ − p)

(
i eikr

kr3
+

eikr

r2

)

−ik(p · r̂) r̂ e−kr

r
− i((p · r̂) r̂ − p)

e−kr

r2
+ i(3(p · r̂) r̂ − p)

e−kr

kr3
. (55)

Both the scalar and vector potential in the Kirchhoff gauge have terms that die out as
e−kr away from the source, but these terms do not contribute to such behavior in the E and
B fields.

Far from the dipole, the potentials are the same in the Coulomb gauge, the Gibbs gauge,
the Kirchhoff gauge and the static-voltage gauge,

V
(C)
far = V

(G)
far = V

(K)
far = V

(SV)
far = 0, (56)

A
(C)
far = A

(G)
far = A

(K)
far = A

(SV)
far = ik(p0 × r̂) × r̂

ei(kr−ωt)

r
. (57)

2.8 Poincaré Gauge

In cases where the fields E and B are known, we can compute the potentials in the so-called
Poincaré gauge (see sec. 9A of [8] and [17, 18, 19]),5

V (P)(r, t) = −r ·
∫ 1

0

duE(ur, t), A(P)(r, t) = −r ×
∫ 1

0

u duB(ur, t) (Poincaré). (58)

These forms are remarkable in that they depend on the instantaneous value of the fields only
along a line between the origin and the point of observation.6

5The Poincaré gauge is also called the multipolar gauge [20].
6The potentials in the Poincaré gauge depend on the choice of origin. If the origin is inside the region of

electromagnetic fields, then the Poincaré potentials are nonzero throughout all space. If the origin is to one
side of the region of electromagnetic fields, then the Poincaré potentials are nonzero only inside that region,
and in the region on the “other side” from the origin.
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The scalar potential in the Poincaré gauge can be computed from eqs. (58) and (21),

V (P)(r, t) = −r ·
∫ u0=1

0

duE(ur, t) = −r

∫ 1

0

2(p · r̂)
(

1

u3r3
− ik

u2r2

)
eikur du

= −2(p · r̂)
∫ r

0

(
1

s3
− ik

s2

)
eiks ds. (59)

The integral is ill behaved at the lower limit, and the Poincaré potentials are not useful
for this example. However, if the oscillating dipole were at not at the origin, the Poincaré
potentials could be evaluated (with considerable effort) at any point not on the ray from the
origin to the dipole.
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