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1 Problem

A variant on the electro- or magnetostatic boundary value problem arises in accelerator
physics, where a specified field, say B(0, 0, z), is desired along the z axis. In general, there
exist static fields B(z,y, z) that reduce to the desired field on the axis, but the “boundary
condition” B(0, 0, z) is not sufficient to insure a unique solution.!

For example, find a field B(z, y, z) that reduces to,

B(0,0,2) = Bycoskz X + Bysinkz y (1)

on the z axis. In this, the magnetic field rotates around the z axis as z advances.

Show how the use of rectangular or cylindrical coordinates leads “naturally” to different
forms for B.

One 3-dimensional field extension of (1) is the so-called helical wiggler [2, 3], which obeys
the auxiliary requirement that the field at z 4+ 0 be the same as the field at z, but rotated
by angle k. Show that this field pattern can be realized by a current-carrying wire that is
wound in a helix of period A\ = 27 /k [4].

2 Solution

2.1 Solution in Rectangular Coordinates

We first seek a solution in rectangular coordinates, and expect that separation of variables
will apply. Thus, we consider the form,

By = f(x)g(y)coskz, (2)
B, = F(x)G(y)sinkz, (3)
B. = A@)B)C(), @)

Then,
V- -B=0= flgcoskz + FG'sinkz + ABC’, (5)

where the ’ indicates differentiation of a function with respect to its argument. Equation (5)
can be integrated with respect to z to give,

/ F I
ABC — —f—lf’sinkz L EC

cos kz. (6)

If the axial field has only an axial component a unique solution obtains [1].
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The z component of V x B = 0 tells us that,

0B,

OB
o = fg coskz=—2 = F'Gsinkz. (7)
Y

ox

For this to hold at all # and y we must have ¢’ = 0 = F’, which implies that g and F are
constant, say 1. Likewise,

0B, 0B, f"

9. —fksinkz = 5 A'BC = s sin kz, (8)
using eqs. (6)-(7). Thus, f* — k*f =0, so,
f=fe" + fae™ (9)
Finally,
B B. "o
% = Gkcoskz = a@y = AB'C = % sin kz, (10)
S0,
G = Gleky —+ Gge_ky. (11)

The “boundary conditions” f(0) = By = G(0) are satisfied by,
f = Bgcosh kx, G = By cosh ky, (12)

which together with eq. (6) leads to the solution,

B, = Bycoshkxcoskz, (13)
B, = DBjycoshkysinkz, (14)
B. = —Bysinhkxsinkz + Bysinh ky cos kz, (15)

This satisfies the last “boundary condition” that B,(0,0,z) = 0.
However, this solution does not have helical symmetry.

2.2 Solution in Cylindrical Coordinates

Suppose instead, we look for a solution in cylindrical coordinates (7,0, z). We again expect

separation of variables, but we seek to enforce the helical symmetry that the field at z + 0

be the same as the field at z, but rotated by angle k6. This symmetry implies that the

argument kz should be replaced by kz — #, and that the field has no other 6 dependence.
We begin constructing our solution with the hypothesis that,

B, = F(r)cos(kz —#0), (16)
By = G(r)sin(kz — ). (17)

To satisfy the condition (1) on the z axis, we first transform this to rectangular components,

B, = F(r)cos(kz —0)cosf+ G(r)sin(kz — 0)sin6, (18)
B, = —F(r)cos(kz—0)sinf + G(r)sin(kz — 0) cos b, (19)

2



from which we learn that the “boundary conditions” on F' and G are.

A suitable form for B, can be obtained from (V x B), = 0:

10B. 0By
i = kG cos(kz — 0),

S0,

B, = —krGsin(kz — 0),

which vanishes on the z axis as desired.
From either (V x B)y =0 or (V x B), = 0 we find that,

d(rG)  d(krG)

= —
dr dkr

Then, V - B = 0 leads to,

(kr)zd dE::)C‘j) + krda(ll(“;g) —[1+ (kr)}(krG) =

This is the differential equation for the modified Bessel function of order 1 [5]. Hence,

Oh(lm") g {1+ (k;")Q +...]7

o dh (0__): {1_‘_3(];7")2_’_“.]‘

The “boundary conditions” (20) require that C' = 2By, so our second solution is,

Il(k’T')

B, = 2B, (Io(kr)— :

) cos(kz — ),

I
By = QBOk—; sin(kz — 0),
Bz = —230]1 sin(kz — 6‘),

which is the form discussed in [3].

2.3 Magnetic Field Due to a Double Helix

This section follows [6].

(20)

(21)

(22)

(23)

(24)

We consider a wire that carries current I and is wound in the form of a helix of radius a

and period A = 27w /k. A suitable equation of this helix is,

r1 = asinkz, y1 = —acoskz.

(30)



The magnetic field due to this winding has a nonzero z component along the axis, which is
not desired. Therefore, we also consider a second helical winding,

T9 = —asinkz, Yo = acoskz, (31)

which is offset from the first by half a period and which carries current —I. The combined
magnetic field from the two helices has no component along their common axis.
The unit vector 1; 5 that is tangent to helix 1(2) at a point,

), = (212,10, %) = (Fasin k', Facoskz', 2') (32)

has components,

A +2rmacoskz , £2rasinkz’, A
Lo = ( ) , (33)

A+ (27a)?

and the element dl} , of arc length along the helix is related by,

A2+ (2ma)?

dl, , =1, ,dz'
1,2 1,202 )\

= d2/(tkacoskz', £kasinkz', 1). (34)

The magnetic field B at a point r = (0,0, z) on the axis is given by,

B(0,0,2) — {/dl’lx(r’l—r)_{/dlgx(rg—r)
1 2

c |r’1—r|3 c |I"2—r|3
2la [ dz' A '
T oo |a% 4+ (2 — 2)?]3/? (X(k(2" — 2)sin k2’ + cos k2')
+y(—k(2' — 2) cos kz' + sin kz')]
21 [ dt

= ca - m [f((kat Sln(kat + kZ) + Cos(kat + kz))

+y(—kat cos(kat + kz) + sin(kat + kz))]

41k . . 1 [ coskat * tsinkat
= T(xcosk:z—i—ysmk‘z) {%/0 mdt—i—/o mdt] ,(35)

where we made the substitution z’ — z = at in going from the second line to the third.
Equation 9.6.25 of [5] tells us that,

*  cos kat
\/0 mdt = k‘aKl(ka) s (36)

where K7 also satisfies eq. (24). We integrate the last integral by parts, using,

t dt 1
= sin kat dv = ————— du =k kat dt = — . (37
u = sin kat, v e SO U a cos kat dt, v Vg (37)
Thus,
° tsinkat * cos kat
_tsmiat g, g, dt = kaky(ka), 33
| it = ke | SR = ko (ko) (39)

4



using 9.6.21 of [5]. Hence,

ATk
B(0,0,z2) = — [kaKo(ka) + Ki(ka)] (X coskz + ysinkz). (39)

Both Ky(ka) and K;(ka) have magnitudes ~ 0.5¢7% for ka ~ 1. That is, the field on the
axis of the double helix is exponentially damped in the radius a for a fixed current I.
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