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1 Problem

Λ0 hyperons are produced by a pion beam in the reaction π−p → K0Λ0, and observed by the
decay Λ0 → pπ− (which is a weak interaction that does not conserve parity). Let J denote
the spin of the Λ (considered to be unknown in this problem, while the spins of the π−, p
and K0 are known), and θ be the angle of a decay product in the Λ rest frame, relative to
the direction of the Λ in the lab frame. In the case where the Λ is produced exactly along
the beam direction, what are the possible values of Jz?

Show that for unpolarized beam protons, and for Λ’s produced along the beam direction,
the Λ-decay angular distribution depends on J according to

J = 1/2, isotropic,

J = 3/2, 3 cos2 θ + 1,

J = 5/2, 5 cos4 θ − 2 cos2 θ + 1.

(1)

Hints in Sakurai, Invariance Principles and Elementary Particles (1964), p. 17.

This problem is based on R.K. Adair, Angular Distribution of Λ0 and θ0 Decays, Phys.
Rev. 100, 1540 (1955), http://puhep1.princeton.edu/~mcdonald/examples/EP/adair_pr_100_1540_55.pdf.
The principle of this problem was used to determine that the Λ0 has spin-1/2 by F. Eisler
et al., Experimental Determinations of the Λ0 and Σ− Spins, Nuovo Cim. 7 222 (1958),
http://puhep1.princeton.edu/~mcdonald/examples/EP/eisler_nc_7_222_58.pdf.
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2 Solution

A two-particle state can only have orbital-angular-momentum component Lz = 0 along a
z-axis.

If the Λ0 moves along the beam axis, taken to be the z-axis, then so also does the K0,
and no matter what is their orbital angular momentum L, Lz = 0. Of course, the initial
π−p state has Lz = 0, and Jz = ±1/2, since the pion is spinless and the proton has spin-1/2.
Conservation of angular momentum then implies that Jz = ±1/2 for the final state; these
two states are distinguishable, so it suffices to consider only one, say Jz = 1/2.

Similarly, since the initial state can only have J = n/2 for odd n this also holds for the
final state, which in turn implies that the spin of the Λ0 is m/2 for odd m, since the K0 is
spinless.

1. JΛ = 1/2.

In general, the decay final state π−p could have L = 0 or 1 such that J = 1/2. If the
Λ has Jz = ±1/2 in its rest frame, then this couples to the L = 0 π−p state according
to

|1/2, 1/2〉 = |0, 0〉|1/2,±1/2〉, (2)

and couples to the π−p states with orbital angular momentum L = 1 and (proton) spin
S = ±1/2 according to

|1/2, 1/2〉 =

√
2

3
|1, 1〉|1/2,−1/2〉 −

√
1

3
|1, 0〉|1/2, 1/2〉, (3)

|1/2,−1/2〉 = −
√

2

3
|1,−1〉|1/2, 1/2〉 +

√
1

3
|1, 0〉|1/2,−1/2〉, (4)

using the Clebsch-Gordon coefficients from
http://pdg.lbl.gov/2013/reviews/rpp2012-rev-clebsch-gordan-coefs.pdf.

The initial Jz = ±1/2 states, and the decay final states are all distinguishable by the
proton spin component, so we have four amplitudes to consider,

α|0, 0〉|1/2, 1/2〉 − β

√
1

3
|1, 0〉|1/2, 1/2〉, (5)

β

√
2

3
|1, 1〉|1/2,−1/2〉, (6)

α|0, 0〉|1/2,−1/2〉 + β

√
1

3
|1, 0〉|1/2,−1/2〉, (7)

−β

√
2

3
|1,−1〉|1/2, 1/2〉, (8)

where α is the strength of the interaction with the L = 0 state, and β is the strength
of the interaction with the L = 1 state. We square amplitudes (5)-(8) and add to
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find the angular distribution, noting that the orbital angular momentum states |L, Lz〉
correspond to spherical harmonics Y Lz

L (θ, φ), where θ is the angle of, say, the decay
pion with respect to the z-axis in the Λ rest frame.

Y 0
0 =

√
1

4π
, Y ±1

1 = ∓
√

3

8π
sin θ e±iφ, Y 0

1 =

√
3

4π
cos θ. (9)

The four amplitudes (5)-(8) are then (after multiplying by
√

4π),

α − β

√
1

3
cos θ, −β

√
1

3
sin θ eiφ, α + β

√
1

3
cos θ, −β

√
1

3
sin θ e−iφ. (10)

Squaring, and adding, leads to the angular distribution

2 |α|2 +
2 |β|2

3
(sin2 θ + cos2 θ) = 2 |α|2 +

2 |β|2
3

= isotropic. (11)

We note that the target protons needed to be unpolarized so that the cases of Jz = ±1/2
for the initial state are equally likely, and the cross terms between different L in the
final π−p state cancel out. We assume this holds for the cases of higher possible Λ spin,
and consider than contributions to the angular distribution from different L separately.

2. JΛ = 3/2.

In this case the orbital angular momentum of the π−p final state can be L = 1 or 2
such that J = 3/2. If the Λ has Jz = 1/2 in its rest frame, then this couples to the
π−p final states with orbital angular momentum L = 1 and (proton) spin S = 1/2
according to

|3/2, 1/2〉 =

√
1

3
|1, 1〉|1/2,−1/2〉 +

√
2

3
|1, 0〉|1/2, 1/2〉, (12)

which implies an angular distribution proportional to

∣∣∣Y 1
1

∣∣∣2 + 2
∣∣∣Y 0

1

∣∣∣2 ∝ sin2 θ

2
+ 2 cos2 θ ∝ 3 cos2 θ + 1. (13)

Similarly, the coupling to the π−p final states with orbital angular momentum L = 2
is

|3/2, 1/2〉 =

√
3

5
|2, 1〉|1/2,−1/2〉 −

√
2

5
|2, 0〉|1/2, 1/2〉, (14)

which implies an angular distribution of

3
∣∣∣Y 1

2

∣∣∣2 + 2
∣∣∣Y 0

2

∣∣∣2 ∝ 3
15

2
sin2 θ cos2 θ + 2

5

4
(3 cos2 θ − 1)2 ∝ 3 cos2 θ + 1, (15)

noting that

Y 1
2 = −

√
15

8π
sin θ cos θ eiφ, Y 0

2 =

√
5

16π
(3 cos2 θ − 1). (16)

Thus, either value of L for the π−p final states leads to the same angular distribution,
namely 3 cos2 θ + 1.
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3. JΛ = 5/2.

In this case the possible orbital angular momenta of the final π−p states are L = 2 and
3.

We content ourselves with calculating only L = 2.

|5/2, 1/2〉 =

√
2

5
|2, 1〉|1/2,−1/2〉 +

√
3

5
|2, 0〉|1/2, 1/2〉, (17)

which implies an angular distribution of

2
∣∣∣Y 1

2

∣∣∣2 + 3
∣∣∣Y 0

2

∣∣∣2 ∝ 2
15

2
sin2 θ cos2 θ + 3

5

4
(3 cos2 θ − 1)2 ∝ 5 cos4 θ − 2 cos2 θ + 1. (18)

4


