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1 Problem

In 1926 Fock noted [1, 2, 3] that Schrödinger’s equation for an electric charge e of mass m
in electromagnetic fields described by potentials Aμ = (φ,A) can be written, in Gaussian
units with c as the speed of light,

(−i�D)2

2m
ψ = i�D0ψ, using the “altered” (covariant) derivative Dμ = ∂μ − ieAμ/�c, (1)

which is gauge invariant only if the gauge transformation of the potentials, Aμ(xν) → Aμ +
∂μΩ(xν), is accompanied by a phase change of the wavefunction, ψ(xν) → e−ieΩ(xν)/�c ψ. Yang
and Mills (1954) [4, 5] may have been the first to point out that Fock’s argument can be
inverted such that a requirement of local phase invariance of the form ψ(xν) → e−ieΩ(xν )/�c ψ
implies the existence of an interaction described by a potential Aμ (and charge e) which
satisfies gauge invariance and modifies Schrödinger’s equation via the altered derivative Dμ.
This led to a greater appreciation of the significance of potentials in the quantum realm.

Separately, consideration of possible interference effects in electron microscopy [6] led
Aharonov and Bohm [7, 8] to discuss an electron that moves only outside a long solenoid
magnet (where B = 0 to a good approximation), and which accumulates a different phase in
its wavefunction depending on which side of the magnet it passes. The resulting interference
pattern, which depends on the (gauge-invariant) magnetic flux in the solenoid (that can be
related to the vector potential A in whatever gauge is used), has been observed in subsequent
experiments [9, 10].1

The quantum interference effect in the Aharonov-Bohm experiment is impressive, but
there are already disconcerting issues in purely classical considerations thereof. It is often
remarked that there is no classical effect on an electron that passes outside a long solenoid
magnet, where Bsolenoid = 0. However, the current density that generates the solenoid field is
affected by the magnetic field of the moving electron (even assuming that the electric charge
density associated with the current density is zero).

Problem: Deduce the force on a solenoid of radius a about the z-axis that carries
azimuthal surface current density Kθ = I per unit length, when an electron of velocity
v = v ŷ is at position (x, y, z) = (b, vt, 0), where v � c and |b| � a.2

1This result is often misinterpreted as evidence that the vector potential A is “observable” in the quantum
realm. A better statement is that there exist quantum-electrodynamic effects on the behavior of an electron
which moves only in a region of zero external electric and magnetic field, but where the vector potential (in
any choice of gauge) is nonzero. Note that the observed result relates directly to the magnetic field Bsoloenoid

although this field is zero at the electron; the paradox is more that the observed quantum effect seems to be
action-at-a-distance (as bothered E-P-R in another context [11]) between the solenoid and the electron.

2Assume that the magnetic field of the electron is not “shielded” by the solenoid, which shielding would
imply additional currents that create additional magnetic field external to the solenoid that lead to a force
on the moving electron.
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That is, Newton’s third law is not obeyed by this configuration!
Issues like this were noted by Ampère in the 1820’s and led him to doubt the existence

of isolated, moving electric charges, which view put particle physics on hold for 60 years.
Only after Poynting (1884) [12] developed the notion that electromagnetic fields can support
a flux of energy (and hence also contain momentum [13, 14, 15]), did physicists have the
confidence to reconsider the concept of elementary charged particles.3

In retrospect we note that the issue of apparent violation of Newton’s third law could
have been resolved earlier, based on Faraday’s insight that what we now call the vector
potential A (called the “electrotonic state” by Faraday [18]) can be associated with “electro-
magnetic momentum”, as formulated mathematically by Maxwell [19]. In Gaussian units,
the electromagnetic momentum associated with a charge distribution � that is immersed
in a vector potential A (in the Coulomb gauge, strictly speaking) is given (for quasistatic
motion) by4,5

PEM =

∫
�A

c
dVol. (2)

Problem: Use eq. (2) to deduce the electromagnetic momentum of the electron +
solenoid when the electron is at (x, y, z) = (b, vt, 0), and from this show that dPEM/dt
is equal and opposite to the force on the solenoid found previously.

This seems to be a satisfactory resolution to the issue of momentum conservation, but
a disconcerting result remains. Suppose the electric charge were at rest; then the electro-
magnetic momentum (2) is nonzero, while the solenoid is at rest also and seems to contain
no net momentum. Hence, we have an example of a system at rest which seems to contain
nonzero total momentum!

Peculiarities of this sort were dramatized by Shockley in 1967 [23],6 and remain an arcane

3An important first step was taken by Thomson in 1881 [16, 17] based on considerations of kinetic energy
of a moving charge.

4The Faraday-Maxwell form (2) is a classical effect of the solenoid on the electron, but it does not imply
that the vector potential is observable in classical electrodynamics. Rather, we note that it is equivalent
to the Poynting-Poincaré form, PEM =

∫
E × B dVol/4πc, as shown, for example, in [21]. While the

Faraday-Maxwell form for the electromagnetic momentum suggests that this resides with the electron, the
Poynting-Poincaré form suggests that it resides in the solenoid. This classical ambiguity is a preview of the
Aharonov-Bohm effect that an electron can be affected by an electromagnetic field even if the latter is zero
at the electron.

5The Coulomb-gauge vector potential A(C) is “rotational”, meaning that ∇ · A(C) = 0. In a general
gauge, the vector potential can be written (using Helmholtz’ theorem [20]) as A = Airr + Arot where
∇ × Airr = 0 and ∇ · Arot = 0. Then, a gauge transformation A → A − ∇Ω, φ → φ + ∂Ω/∂ct implies
that Airr + Arot → (Airr − ∇Ω) + Arot, such that Arot is actually a gauge-invariant quantity. Note that
Arot = A(C), i.e., the rotational part of the vector potential in any gauge is the Coulomb-gauge vector
potential.

It is sometimes said that gauge-invariant quantities are “observable”. However, the Coulomb-gauge vec-
tor potential A(C) = Arot in general involves instantaneous effects of distant currents, so claims that the
Coulomb-gauge vector potential is “observable” are associated with claims that instantaneous action at a
distance is also “observable”. This author takes the view that instantaneous action at a distance is not
“observable” (even in the quantum realm) and that the Coulomb-gauge vector potential is not “observable”.

See also [22].
6These peculiarties were previously noted by J.J. Thomson in 1904 [17, 24, 25, 26], but were little

discussed by others for many years. A partial awareness of classical “paradoxes” in the Aharonov-Bohm
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aspect of classical physics, where some systems contain “hidden” momentum [27] (such that
systems “at rest” indeed have zero total momentum). One can give a semiplausible classical
model of the “hidden” momentum as residing in the electrical current in the present example
[29]. Perhaps the main significance of the “hidden” momentum for the Aharonov-Bohm effect
is to remind us that even in a “classical” view, the electron is “entangled” with the solenoid,
although the magnetic field of the solenoid happens to be zero at the location of the electron.
While the field of the solenoid has no “classical” effect on the electron, the electron does have
a “classical” effect on the solenoid, so the two objects should not be regarded as independent
entities. In this context, it should be pleasing, rather than disturbing, that in the quantum
realm the solenoid has an effect on the electron.7

Extended Problem: Comment also on energy and angular momentum in this system.

In the author’s view, the Aharonov-Bohm effect (and the related debate about the “ob-
servability” of potentials [32]) misses the point that the role of the potentials (which must
obey gauge invariance), combined with the notion of local phase invariance, is to deter-
mine the form of the interactions of elementary particles. It is the nonobservability of the
potentials, because they are subject to gauge transformations, which leads the potentials
to be included in the altered derivative Dμ, eq. (1), that makes them so important in the
development of the theory of elementary particles and fields.8

effect appeared in [28].
7This theme was developed by Aharonov for the “dual” example in which a loop of current (magnetic

dipole) interacts with a line charge parallel to the axis of the loop [30]. See also [31].
8For a similar commentary, which includes demonstration that the Aharonov-Bohm effect vanishes in a

suitable classical limit, see [33].
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2 Solution

2.1 Momentum

The magnetic field Be at position x of an electron of charge −e and velocity v at position
xe is (in Gaussian units, and for v � c)

Be(x,xe) =
v

c
× Ee(x,xe) = −ev ×R

cR3
, where R = x− xe. (3)

The force of this magnetic field from an electron at (x, y, z) = (b, vt, 0) on a solenoidal
(surface) current density Kθ(r = a, θ, z) = I per unit length is

F =

∫
K × Be

c
dArea

= −Iev
c2

∫ ∞

−∞
dz

∫ 2π

0

a dθ
(− sin θ, cos θ, 0) × {ŷ × [(a cos θ, a sin θ, z) − (b, vt, 0)}

[(a cos θ − b)2 + (a sin θ − vt)2 + z2]3/2

= −aIev
c2

∫ ∞

−∞
dz

∫ 2π

0

dθ
(− sin θ, cos θ, 0) × (z, 0, b− a cos θ)

(a2 + b2 + v2t2 − 2ab cos θ − 2avt sin θ + z2)3/2

= −aIev
c2

∫ 2π

0

dθ

∫ ∞

−∞
dz

[cos θ(b− a cos θ), sin θ(b− a cos θ),−z cos θ]

(a2 + b2 + v2t2 − 2ab cos θ − 2avt sin θ + z2)3/2

= −2aIev

c2

∫ 2π

0

dθ
[cos θ(b− a cos θ), sin θ(b− a cos θ), 0]

b2 + v2t2 − 2ab cos θ − 2avt sin θ + a2

≈ − 2aIev

c2(b2 + v2t2)

∫ 2π

0

dθ [cos θ (b− a cos θ) , sin θ (b− a cos θ) , 0]

(
1 +

2ab

b2 + v2t2
cos θ +

2avt

b2 + v2t2
sin θ

)

= − 2πa2Iev

c2(b2 + v2t2)

(
−1 +

2b2

b2 + v2t2
,

2bvt

b2 + v2t2
, 0

)

= − 2πa2Iev

c2(b2 + v2t2)

(
b2 − v2t2

b2 + v2t2
,

2bvt

b2 + v2t2
, 0

)
. (4)

This force is very small, being of order 1/c2, and clarification of its possible effect on the
system is more of “academic” than practical interest. Note that πa2I/c is the magnetic
moment per unit length along the solenoid

The uniform magnetic field Bsolenoid = B ẑ inside the solenoid has magnitude B = 4πI/c,
as follows from Ampère’s law. This field can also be deduced from a vector potential A
whose only nonzero component in a cylindrical coordinate system (r, θ, z) is Aθ(r), where
B = ∇ × A implies for a loop of radius r that

∮
A · dl = 2πrAθ =

∫
∇ ×A · dArea = B · dArea =

4π2I

c

⎧⎨
⎩

r2 (r < a),

a2 (r > a).
(5)
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Outside the solenoid, the magnetic field is zero (in the limit of an infinite solenoid), while
the vector potential (in the Coulomb gauge) can be taken as9

Aθ(r > a) =
2πa2I

cr
, A(r > a) =

2πa2I

cr2
(−y, x, 0). (6)

According to eq. (2) of Faraday and Maxwell, the system of electron plus solenoid has
electromagnetic momentum10

P
(1)
EM = −eA(b, vt, 0)

c
= − 2πa2Ie

c2(b2 + v2t2)
(−vt, b, 0) . (7)

The time derivative of this is

dPEM

dt
= − 2πa2Iev

c2(b2 + v2t2)

[
−1 +

2v2t2

b2 + v2t2
,

−2bvt

b2 + v2t2
, 0

]

=
2πa2Iev

c2(b2 + v2t2)

[
b2 − v2t2

b2 + v2t2
,

2bvt

b2 + v2t2
, 0

]
= −F = −dPmech

dt
, (8)

on comparison with eq. (4). Thus,

PEM = −eA(b, vt, 0)

c
= − 2πa2Ie

c2(b2 + v2t2)
(−vt, b, 0) . (9)

The time derivative of this is

dPtotal

dt
=
dPEM

dt
+
dPmech

dt
= 0, (10)

and the total momentum of the system is constant in time. The electrical current in the
solenoid carries momentum, but näıvely we expect that the total mechanical momentum of
a current loop would be zero; however, this is not the case if the current loop is subject to
an external electric field, as in the present example.

The unbalanced force of the moving electron on the solenoid serves to change its “hidden”
internal mechanical momentum, while the bulk of the solenoid remains at rest as the electron
passes by.11,12

9Other choices for the vector potential A are possible. In particular, use of the Poincaré gauge leads to
A that is nonzero only in a region that depends on the (arbitrary) choice of origin [34], so that while it can
be said that the charge interacts “locally” with the vector potential, the location of the “local” interaction
is not uniquely determined.

10The form (7) for the electromagnetic momentum does not appear to be gauge invariant. As discussed
in sec. 2.3 of [22], the vector potential in eq. (7) should actually be the so-called rotational part, Arot, of the
vector potential, which obeys ∇ · Arot = 0. That is, the rotational part of any vector potential equals the
Coulomb-gauge vector potential, as used here, such that eq. (7), properly interpreted, is gauge invariant.

11All this is rather subtle, and apparently not well known, as a paper based on this example was recently
published in Phys. Rev. Lett. claiming that the Lorentz force law must be wrong. For discussion by the
author of this dismal issue, see [35].

12For a discussion of the character of the “hidden” mechanical momentum in a current loop, see [29, 36].

5



For completeness, we evaluate the electromagnetic momentum according to the Poynting-
Poincaré prescription (ignoring the self-field-momentum of the moving electron),

P
(2)
EM =

∫
Ee × Bsolenoid

4πc
dVol ≈ 1

4πc

∫ ∞

−∞
πa2 dz

−e(−b,−vt, z)
(b2 + v2t2 + z2)3/2

× 4πI(0, 0, 1)

c

= −πa
2Ie(−vt, b, 0)

c2

∫ ∞

−∞

dz

(b2 + v2t2 + z2)3/2
= −2πa2Ie(−vt, b, 0)

c2(b2 + v2t2)
, (11)

as in eq. (7).
It turns out [21, 37] there is a third way that the electromagnetic momentum can be

computed (for quasistatic examples) based on the electric scalar potential φ and the current
density J,

P
(3)
EM =

∫
φJ

c2
dVol =

∫
φeK

c2
dArea

= −Ie
c2

∫ ∞

−∞
dz

∫ 2π

0

a dθ
(− sin θ, cos θ, 0)

[(a cos θ − b)2 + (a sin θ − vt)2 + z2]1/2

= −aIe
c2

∫ ∞

−∞
dz

∫ 2π

0

dθ
(− sin θ, cos θ, 0)

(z2 + b2 + v2t2 − 2ab cos θ − 2avt sin θ + a2)1/2

≈ −aIe
c2

∫ ∞

−∞

dz

(z2 + b2 + v2t2)1/2

∫ 2π

0

dθ (− sin θ, cos θ, 0)

(
1 +

ab cos θ + avt sin θ

z2 + b2 + v2t2

)

= −πa
2Ie(−vt, b, 0)

c2

∫ ∞

−∞

dz

(z2 + b2 + v2t2)3/2
= −2πa2Ie(−vt, b, 0)

c2(b2 + v2t2)
. (12)

The fact that electromagnetic momentum can be computed several different ways reminds
us that even in “classical” systems the subsystems should be regarded as “entangled” rather
than “independent”.

2.2 Energy

The system of electron plus solenoid has an interaction field energy,

UEM,int =

∫
Ee · Esolenoid + Be ·Bsolenoid

4π
dVol ≈ πa2I

c

∫ ∞

−∞
Be(0, 0, z) dz (13)

=
πa2I

c

∫ ∞

−∞

evb

c(b2 + v2t2 + z2)3/2
dz =

2πa2evbI

c2(b2 + v2t2)
= e

v

c
· Asol =

∫
Je · Asol

c
dVol,

since Esolenoid = 0 and Bsolenoid = 4πI ẑ/c with magnetic flux Φsol = πa2Bsolenoid. That is, the
electromagnetic interaction field energy (which can have either sign) is greatest in magnitude
when the electron is closest to the solenoid.

Where is the compensating energy such that the total energy of the (isolated) system is
conserved?

In the Aharonov-Bohm effect it is tacitly assumed that the magnetic field of the solenoid
does not change with time, and it is typically implied that this is because that field is due to
permanent magnetism. For example, the uniform surface current density Kθ = I considered
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on p. 2 could be due to a cylinder of radius a with uniform magnetization density M = I ẑ/c.
In this case, there is an additional interaction energy,

UM,int = −
∫

M · Be dVol ≈ −πa
2I

c

∫ ∞

−∞
Be(0, 0, z) dz = −UEM,int, (14)

such that the total interaction energy is zero.13

However, it could be that the solenoid is made of a conductive material and the surface
currents are maintained constant by a battery. In this case, the battery does work on the
currents (and vice versa) such that the sum of the field energy and that of the battery
remains constant. One way to see this is to take the time derivative of eq. (13),14

dUEM,int

dt
=

∫
∂Be

∂t
· Bsolenoid

4π
dVol = − c

4π

∫
∇× Ee · Bsolenoid dVol

= − c

4π

∫
Ee · ∇× Bsolenoid dVol = −

∫
Jsolenoid ·Ee dVol, (15)

using the identity that ∇ · (E × B) = B · (∇ × E) − E · (∇ × B). That is the change in
the interaction field energy is opposite to the work done by the field Ee on the currents. To
keep the currents constant, the battery must do work on them opposite to that done by Ee,
which means that the change of energy of the battery equals the work done by Ee on the
currents, which is opposite to the change in the field energy.

We might worry that the “hidden” momentum invoked in sec. 2.1 is associated with a
“hidden” energy that should be considered here. However, as discussed in [29], “hidden”
mechanical momentum can be thought of as arising because the total energy of the charge
carriers of the current in an external electric field remains constant; if the electric potential
energy of the charge rises, the kinetic energy (and momentum) decreases, etc.

2.3 Angular Momentum

The force (4) of the electron on the solenoid is associated with a torque,

τ =

∫
r × K × Be

c
dArea

= −Iev
c2

∫ ∞

−∞
dz

∫ 2π

0

a dθ
r × (− sin θ, cos θ, 0) × {ŷ × [(a cos θ, a sin θ, z) − (b, vt, 0)}

[(a cos θ − b)2 + (a sin θ − vt)2 + z2]3/2

= −aIev
c2

∫ ∞

−∞
dz

∫ 2π

0

dθ
r × (− sin θ, cos θ, 0) × (z, 0, b− a cos θ)

(a2 + b2 + v2t2 − 2ab cos θ − 2avt sin θ + z2)3/2

= −aIev
c2

∫ 2π

0

dθ

∫ ∞

−∞
dz

(a cos θ, a sin θ, z) × [cos θ(b− a cos θ), sin θ(b− a cos θ),−z cos θ]

(a2 + b2 + v2t2 − 2ab cos θ − 2avt sin θ + z2)3/2

13A delicacy is that if the solenoid does not move, no work is done on it by the field Be, so eq. (14) does
not obviously represent a stored energy. However, in case of a permanent solenoid magnet, the meaning
of the interaction energy (13) is also doubtful in that one cannot well represent permanent magnetism by
a classical current density J. That the energies (13) and (14) cancel for a permanent solenoid magnet is a
“classical” accommodation of an ultimately quantum phenomenon.

14This argument was suggested by D.J. Griffiths.
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= −aIev
c2

∫ 2π

0

dθ

∫ ∞

−∞
dz

(−bz sin θ, bz cos θ, 0)

(a2 + b2 + v2t2 − 2ab cos θ − 2avt sin θ + z2)3/2
= 0. (16)

Since the solenoid exerts no force/torque on the electron, the total torque on the system is
zero and we expect its angular momentum to be constant in time.15

The system of uniformly moving electron plus constant-field solenoid contains both field
and mechanical angular momentum. The mechanical angular momentum of the electron is
constant in time.

It is delicate to compute the field angular momentum, in that the calculation requires
assigning a location to the field momentum. The three prescriptions, (7), (11) and (12)
which gave the same value for the total field momentum suggest different locations for it,
and hence lead to different values for the field momentum.

The field angular momentum can be computed from eq. (7) as

L
(1)
EM = re × P

(1)
EM = −re × eA

c
= −(b, vt, 0)× 2πa2Ie(−vt, b, 0)

c2(b2 + v2t2)
= −2πa2Ie ẑ

c2
, (17)

which is constant in time. Using eq. (11) we find

L
(2)
EM =

∫
r× Ee ×Bsolenoid

4πc
dVol

≈ 1

4πc

∫ a

0

r dr

∫ 2π

0

dθ

∫ ∞

−∞
dz (r cos θ, r sin θ, z) ×
−e(r cos θ − b, r sin θ − vt, z)

[(r cos θ − b)2 + (r sin θ − vt)2 + z2]3/2
× 4πI(0, 0, 1)

c

= −Ie
c2

∫ ∞

−∞
dz

∫ a

0

r dr

∫ 2π

0

dθ
[z(r sin θ − b), z(r cos θ − b), rb cos θ + rvt sin θ − r2]

(z2 + b2 + v2t2 − 2rb cos θ − 2rvt sin θ + r2)3/2

≈ −Ie
c2

∫ ∞

−∞
dz

∫ a

0

r dr

∫ 2π

0

dθ
(0, 0, rb cos θ + rvt sin θ)

(z2 + b2 + v2t2)3/2

(
1 + 3

rb cos θ + rvt sin θ

z2 + b2 + v2t2

)

= −Ie
c2

∫ ∞

−∞

dz

(z2 + b2 + v2t2)5/2

∫ a

0

r dr 3πr2(b2 + v2t2)

= −πa
4Ie(0, 0, 1)

c2(b2 + v2t2)
= − πa4Ie ẑ

c2(b2 + v2t2)
, (18)

which varies with time. For completeness, we use eq. (12) to obtain

L
(3)
EM =

∫
r × φJ

c2
dVol =

∫
r × φeK

c2
dArea

= −Ie
c2

∫ ∞

−∞
dz

∫ 2π

0

a dθ
(a cos θ, a sin θ, z)× (− sin θ, cos θ, 0)

[(a cos θ − b)2 + (a sin θ − vt)2 + z2]1/2

= −aIe
c2

∫ ∞

−∞
dz

∫ 2π

0

dθ
(−z cos θ,−z sin θ, a)

(z2 + b2 + v2t2 − 2ab cos θ − 2avt sin θ + a2)1/2

15In the case where the solenoid is a cylinder of uniform magnetization density M the net torque of the
electron’s magnetic field on the magnetization is zero (although there is a bending moment).
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≈ −a
2Ie

c2

∫ ∞

−∞

dz

(z2 + b2 + v2t2)1/2

∫ 2π

0

dθ (0, 0, 1)

(
1 +

ab cos θ + avt sin θ

z2 + b2 + v2t2

)

= −2πa2Ie(0, 0, 1)

c2

∫ ∞

−∞

dz

(z2 + b2 + v2t2)1/2
= L

(1)
EM

∫ ∞

−∞

dz

(z2 + b2 + v2t2)1/2
, (19)

which diverges.
Only the field angular momentum (17) is constant in time, so as seems to be expected.
It is surprising that the form (18) is time dependent, since it might seem the most basic

form of for the field angular momentum. The computation in eq. (18) ignored the magnetic
field outside the long solenoid, although this field is not strictly zero, just extremely small.
It turns out that while the “return flux” outside the solenoid can be ignored in computations
of the field momentum, this is not the case when calculation the field angular momentum
where the field momentum density is multiplied by the vector r. A more careful computation
[38] of L

(2)
EM shows that it is the same as L

(1)
EM, i.e., constant in time.

Indeed, a general result (Appendix B of [38]) is that for quasistatic systems, L
(1)
EM = L

(2)
EM

(for suitably careful evaluation of the latter) but that the form L
(3)
EM differs from these two.

Hence, we identify the field angular momentum in the present example with the result of
eq. (17).16,17
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