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proposed by ScawiNGER and a weak current proposed by POLKINGHORNE,
is renormalizable and symmetrical hetween V and 4, but it involves
postulating a new particle and is hard to extend to strange particles.
The third model resembles the second one except that it is not necessary
to introduce a new particle. (Renormalizability in the usual sense is
then lost, however). Further research along these lines is suggested,
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be plausibly obtained under less siringent conditions.
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1. — Introduction.

The decay of the muon is the only process known experimentally in which
the weak interactions can apparently be studied without complications due to
the strong interactions. The electromagnetic corrections, moreover, are finite
and have been calculated (*). All evidence so far supports the correctness of
the following Lagrangian for the interaction:

(1) ZL(u decay) = 27 G, [y, (1 + y,)e][#y,(1 4 y,)ul" 4 Herm. conj.

(The two neutrinos involved have been denoted by ditferent symbols » and »'
because we are not certain that they are identical, although they are both
massless and they exhibit the same helicity). The value of the constant G,
can be determined from the rate of decay of the muon according to the for-
mula:

2) I, = (1922°)" 162w}, (0.9956) ,

which is well known, perhaps with the exception of the final factor, which
gives the electromagnetic correction computed in Ref. (). If we take (?) the
muon lifetime I',* to be 2.208 £ 0.003-10~°*s and the mass m, to be
106.65 4- 0.01 MeV, then we get for the dimensionless quantity G“mi the value:

G, m; = 1.204 £+ 0.001-107°,

where m, is the proton mass and our units are such that h=c=1.

Now let us turn to those leptonic weak processes in which baryons and
mesons are involved (bringing in the strong interactions), but in which there
is no change of strangeness (AS = 0). Experimentally, we deal with nuclear
 decay (including K capture and inverse 3 decay), muon capture by nuelei,
and the decay of the charged pion. It appears that all these processes can
be deseribed by an interaction Lagrangian of the form:

@) L =27HEIV, 4 PR + py)e + (1 +y)u)" + Herm. conj.
where 17, and P, are vector and pseudovector currents which can transform
neutron into proton. As has, of course, been remarked (**), the experiments

(') &. M. Berymax: Phys. Rev., 112, 267 (1958).

(2) Private communication from V. L. TELEcDI on the work of the (hicago group.
() R. P. FEYNMax and M. GELL-ManN: Phys. Rev., 109, 193 (1958).

(1 E. ¢, G. RuparsHaN and R. E. Marsuak: Phys. Ree, 108, 1860 (1958).
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suggest that G(V_ --P) is very much like G, py (L+y,)n, so that the weak
interactions are essentially vuniversal» in their strength and form for the
pairs ve, v'u, and pn. However, G(V + P,) need not be precisely of the form
indicated; there may, for example, be other terms. It is with just this ques-
tion of the strueture of the ecurrents, especially of P, that we are con-
cerned here.

For the sake of definiteness, let us agree that the coefficient of py n in },
is unity—that is our definition of /. We also assume that the coefficient of
Py v in P, is unity.

Because of the presence of strong interactions, we do not necessarily observe
G directly. In the p decay of the neutron, for example, we can measure the
matrix elements of ¢V and GP, between free nucleon states with very little
momentum transfer (< 1 MeV). In this limit we have:

(4a) GeplViin® — Gl pu,,

(41)) G7) ;P\ }”’.\ = (;4 it’.f‘r = ;’\ }’5’1(2' ’

where &, and ¢/, are the conventional Fermi and Gamow-Teller coupling con-
stants of nuclear B deeay and u; and u, are the initial and final free nucleon
spinors.

It is well known that the experimental value of ¢, is remarkably close to
that of 7, and an explanation (*) of this fact has been offered based on two
theoretical hypotheses:

a) Exact «universality » of strength: ¢ =@ .

b) The conserved vector current theory (*%) of T, which gives . = ¢
(apart from electromagnetic corrections) as a consequence of the vanishing of
the divergence 2 17 .

No far the best evidence for this point of view is the ft value of the decuy
of 10, which is predicted to be 30016 on the basis of «) and b) and the value
of (i, quoted above, while the experimental result (°) is 3038 4-56. The
theoretical prediction is subject to error only from the experimental muon
lifetime and mass and from electromagnetic corrections to the decay of "O.

There is, of course, some discrepancy between theory and experiment, which
is made worse if we accept Berman’s estimate (1) of the electromagnetic cor-
rections, which reduces the predicted ft value to 2917. If we take seriously

(®) 8. 3. GersnreIN and J. B. Zrupovicn: Zurn, Eksp. Teor, Fiz., 29, 698 (1953)
(translation: Sov. Phys. Jowrn. Brp. Theor. Phys., 2, 576 (1957)).

(®) D. A. Brourey, E. AumqQuist, H. E. Gove, A. K. LarnerLaxp, E. B. I'aun
and A. J. Fercuson: Phys. Rer., 105, 957 (1957).
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this number, the experimental value, and the conserved vector current hypo-
thesis, we obtain G/G, = 0.97 4 0.01 rather than unity (*).

Other tests of the theory have been proposed (**) but not yet carried out.
For the time being, let us suppose it to be correct and go on to inquire about
the form of the pseudovector current P,.

At one time it was suggested (®) that here too the renormalization factor
might be unity. Some effort was put into a search for theories in which that
would be true. Certain authors tried to find theories in which P, would be
divergenceless, by analogy with the vector case. The following points are
now clear in connection with this type of investigation:

4) Experimentally (¢) the quantity — &,/, is 1.25 + 0.06, so that the
axial vector renormalization factor is not unity, although it is not very far away.

B) The divergence ¢ .P, of the axial vector current cannot in any case
be zero, because that would make the rate of decay of the charged pion
vanish (®).

() If, in some particular theoretical model, there is a limit in which
g, P, is zero, it is a delicate limit in which, for example, the nucleon mass or
the pion mass vanishes; and the question of whether in this limit — &,/G is
really unity must be carefully investigated for each model (**).

D) No one has found a theory in which a reasonable calculation of
— @, /G can be made with present methods.

(*) Note added in proof. — Should this discrepancy be real, it would probably indi-
cate a total or partial failure of the conserved vector current idea. It might also mean,
however, that the current is conserved but with //6¢/, < 1. Such a situation is consi-
stent with universality if we consider the vector current for AS=0 and AS=1 toge-
ther to be something like:

GV, 4 GVIS=D — G py (n + eAd) (1 + )T+ ..,

and likewise for the axial vector current. 1f (1+62)-%=0.97, then ¢*=.06, which is
of the right order of magnitude for explaining the low rate of B decay of the A par-
ticle. There is, of course, a renormalization factor for that decay, so we cannot be sure
that the low rate really fits in with such a picture.

(*) M. GrirL-Max~x: Phys. Rev., 111, 362 (1958).

(*) M. T. Buray, V. E. Kroux, T. B. Novey, G. R. Rixeo and V. L. TeLEGDI:
Phys. Rev., 110, 1214 (1958). See also C. 8. Wu: Rev. Mod. Phys., 31, 783 (1959).

(®) J. C. Tavron: Phys. Rer., 110, 1216 (1958); M. I.. GOLDBERGER and 8. B. TrEe1-
MAN: Phys. Rev., 110, 1478 (1958).

(1) R. J. Brx-StovLe: Nuovo Cimento, 10, 132 (1958); 8. OxuBo: Nuovo Cimento,
18, 202 (1959).
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Despite the lack of success of the program just disecussed, it has turned up
ab least three models in which ¢, P,, instead of vanishing, is proportional to
a component of the pion field. This relation is interesting, not because it ex-
plains why — @, /G is fairly close to one, but because it gives a relation between
the value of — &, and the rate of decay of the charged pion.

The connection of the formula
(5) e P, = \ /9 7
with the rate of pion decay was discovered originally (*) for a particular model,
in which the pion-nucleon strong interaction has the gradient form.

Our work on this model is an extension of that of NorTON and WATsON (1)
and J. C. TAYLOR (12).

The formula relating — G, to the charged pion decay amplitude is essen-
tially the one proposed by GOLDBERGER and TREIMAN (%), which gives re-
markable agreement with experiment. We shall derive, in any theory for
whieh eq. (5) is valid, an exact formula for pion decay, to whieh the equation
of Goldherger and Treiman is a very plausible approximation.

We shall then investigate three models of strong and weak couplings of
nucleons and pions that yield eq. (5). All of these models present some diffi-
culties, however. None is a really convincing theory. We must therefore
come back to the question of whether eq. (5) is really necessary in order to
derive the result of GOLDBERGER and TREIMAN in a convineing manner.

2. — The rate of charged pion decay.

Suppose we have a theory of the strong interactions and a definition of
the axial vector current such that eq. (5) holds. Then the matrix element
of P, for negative pion decay may be written:

a q,
V2 mk

where ¢, is the four-momentum of the pion, since, on taking the divergence
of both sides, we get back just eq. (5) between the pion state and the vacuum.
Note ¢>=—m..

(6) 0 Pyw) i = O () jer

(*) By R. P. FRYNMAN, with some assistance from one of us (M. (i.-M.).

(') R. E. Norrox and W. K. R. Warsox: Phys. Rev., 110, 996 (1958).

(12} J. C. TayrLor: quoted in ref. {17). See also R. F. STREATER and J. (. TAYLOR:
Nuel. Phys., T, 276 (1958).

(**) M. L. GoLpBERGER and S. B. TRemMan: Phys. Rev., 110, 1178 (1458). A recent
criticism of their paper has been given by R. F. Sawvyger: Phys. Rev., 116, 231 (1959);
like us, SawyYer seeks a bebter derivation of their result.
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The pion field operator n—(x) may be written as the product of a field
renormalization factor, conventionally called V'Z,, and the renormalized ope-
rator z, (#), for which the matrix element between the pion state and the
vacuum is just the same as that of a free field between afree particle state and
the free vacuum. So we have for the matrix element of P, in pion decay
the following formula in terms of a v/Z,:

(7) WPy = — L2 e (s

Now we may also evaluate — G, /@ in terms of av/'Z,. We take the diver-
gence of both sides of eq. (4b) in the limit of very small momentum trans-
fer & (final momentum minus initial momentum) and we have:

(8) Gple,Pon —~ — G (—ik)u, vy yyu, =2m(— U v, yu,,

where m i3 the nucleon mass. If we arve to apply eq. (3) we must calculate
{pla|n> in the limit of zero momentum transfer. Now in the neighborhood
of k*==—m?, we know this matrix element to be expressible in terms of the
renormalized coupling constant g, as follows:

(9) plan ~ VZ (R +mk) T iV 2 g, T, v,

To make this formula correct at all values of k%, we must simply replace the
free propagator (K*-+m2)™' of the meson by the exact renormalized propa-
gator, which we may ecall (F*+m2) ‘d_(k*), and the free vertex 7,y, by the
exact renormalized vertex, which we may call 7 y; F_(k*). The «form factors »
d_(k*) and F_(k*) are both unity at k*=—m?. We have, then, as k> — 0,

the result:

ia V'Z,

(10) RIEN A

i

d(0) Fo(0)i V2 g0, 7, ysu, -
Comparing thisr equation with eq. (8), we find:

e Im G 1
11) aw'Z :;ami(__‘f) LI
( * % d.(0) Fo(0)

The unknown quantity in our formula (7) for the pion decay matrix element
is now evaluated and we may calculate the rate of the process n— — p— -9,
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which gives essentially the reciprocal lifetime of the charged pion:

(12) [r= (16:12 j’;)« g "k (1— "“) [d,(0) Fr(0)]2

5
my,

Except for the final factor, this is the same as the formula given by GoLD-
BERGER and TREIMAN (*%). Their derivation, based on the conventional pseudo-
sealar theory of the strong interactions and the conventional definition py, y,n
of the current P, involves several violent approximations which are not
really justified. The formula, however, is in excellent agreement with experiment.
The measurements (') give:

r .
(13) # = (134 4 0.04)- 107,
while eq. (12) yields:
r-n Al a2 f = 5 —16}
(14) o [d/0) Fi)]2 {(1.66 £ 0.2)- 1076}

with ¢} /4m =15 + 2.

In the work of GOLDBERGER and TREIMAYN, it was very mysterious that the
agreement, of the figures should be so close. If, however, eq. (12) is derived,
as above, from a theory in which eq. (5) holds, then the discrepancy is to be
attributed solely to the form factor [d_(0) F_(0)}-2, which we know equals unity
when the argument is —m}. We wounld not be surprised if at zero the
departure from unity amounts to only twenty percent or so.

We must be careful not to exaggerate the advantage of models in which
eq. (P) holds. It can be shown (*) that in any theory that predicts a non-
vanishing rate of pion decay we can obtain an exact equation analogous to (12),
with the form factor d_(0)F_(0) replaced by a general «form factor» ¢(0),
where @, like d_F,_, equals nnity at the value — m? of its argument. The dif-
ference between one theory and another lies merely in the question of whether
this general «form factor» ¢ is likely to be slowly varying. If the theory is
such that eq. (5) is valid, so that ¢ = d_F_, then it is not unreasonable that
¢ be slowly varying. In the conventional theory, where ¢ is something much
more complicated, the conclusion is much less plausible. In any case, we
cannot exclude the possibility that the formula of Goldberger and Treiman

(1) As listed by K. M. Crowr: Nuovo Cimento, 5, 341 (1957).
(*) See forthcoming article by BernsrriN, Freiny, GrrL-Many and THIRRING.
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is approximately valid even in the conventional theory, for which they tried
to derive it.

In the subsequent sections, we shall study models in which eq. (5) actually
holds, but we must bear in mind the question of whether such an assumption
is really necessary in order to explain what seems to be an experimental fact,
that ¢(0) is close to unity.

In order to study the models conveniently, and in order to show the relation
between the vector and the pseudovector currents, let us now review some
formalism.

3. — The divergence of a current and gauge transformations (1),

Let us consider a theory of the strong interactions derivable from a Lag-
rangian density & expressed in terms of field components 3, and their first
spatial derivatives ¢ y,. Then the equations of motion of Lagrange are (*):

3F 3.¥
15 R Sl S
(13) Spi - (e )

Suppose we now subject each field component y,(r) to an infinitesimal
local gauge transformation:

(16) pil) = pula) + Al) Filyale), puli), ... -

with a gauge function 4. Then we may examine the variation of £ under
this change and we find, always to first order-:

- 3 3% .
(11) Sag);sz/l*{—gaa’—;i gazl,
where

3 3% 3F
= B A e AF,
(18) sS4~ 8y, i So\w,-a )
and
e, ‘g
(19) 5 0L F,.

5.04 7 ddp

(*%) Our point of view in this section has much in commen with that of 8. GLAsmow:
Nucl. Phys., 10, 107 (1959), as well as that of 8. BLubMAN: Nuoro Cimento, 9, 433 (1958).
See, also, the earlier work of J. ScrrwiNGER: ref. (16).

(*) Our discussion is classical. We ignore certain complications that may arise in
quantum mechanies from the non-commutation of boson fields and their canonical
momenta, making necessary a careful ordering of the operators.
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Using (8), (11) and (12), we see immediately that we have Lagrange’s equation
for A(z):
3.7 8%

2 e R
@0 A~ B 5ad

Now suppose that under a particular transformation with infinitesimal
gauge function /A taken independent of co-ordinates, the Lagrangian £ is
invariant. Then 3.£/3A vanishes and thus:

. 07

g
“sad

(21)

We may then identify 8.%/30, .1 as the current which is conserved as a result
of the invariance of the theory under the gauge transformation with con-
stant A.

Consider, for example, the conservation of baryons. Let each baryon field
acquire a factor (1+i/11(m)), while the meson fields are left unchanged. The
baryon current oc 8.#/3¢, /A, is then conserved.

For conservation of charge, we let each field acquire a factor (1 +iQA,(»)),
where @ is the charge destroyed by the field. The Lagrangian is chosen in-
variant under this for constant A,. The electric current oc §%2/8¢, 4, is then
conserved.

We note that we are working only with the Lagrangian of the strong inter-
actions; that is to say, we are ignoring all higher effects of the electromagnetic
field. We are therefore not conecerned, at the moment, with the more general
gauge transformation that includes photons and that also leaves the electric
current exactly conserved.

For congervation of isotopic spin, we consider rotations in isotopic space
with an isotopic vector gauge function uw. For example, for the nucleon field
N(z) and the pion field w{z), we have:

N—-{1+itul,
(22)
T =7 —2uxXr.

With the Lagrangian invariant under these rotations for u constant, we have
congervation of the isotopic spin current oc 8.2/3¢,u.

In the conserved vector current theory of the weak couplings, V. (») is
simply the + component of an isotopic vector current ¥, («) which is equal to
the isotopic spin current:

(23) Vie) =i i

= Ny N 4 2inxam & ..
Sou Nty N + 2intx o 4 ...,
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where the terms we have written explicitly come from the free Lagrangian
of N and =

Now for the axial vector weak current P (x) it is reasonable to suppose
that it too is the - component of an isotopic vector P (x) which can he ge-
perated from % by a gauge transformation with a gange function v(r) that
is a pseudoscalar in space and an isotopic veetor:

3.¥
24 Plx) =1 — .
{24) (i) Saw
We are not, however, free to suppose that this current is divergenceless, i.e.
that the Lagrangian is invariant under our gaunge transformation with con-
stant ». Thus in place of the conservation law (14) we must use the more
general formula (13), which gives us for the divergence of the pseudoscalar
current the result:

0¥

5y —_
(25) P =1 So

Let us take as an example the conventional pseudoscalar theory of nucleons
and pions with Lagrangian density:

_ 42 7o)z
(26) L= —Nyo + me— ig,T ®Y5) I G

) 2

— Ao(m2).

Tf we wish to have for our axial vector current P, just the simple formNzy, p, N,
then we take for our gauge transformation the following:

N (14 it-vy)N,

™ —>T7.

We then obtain for ¢ P, the result:

i3.%,. = . 7
__8_1;3 = 2my Nty, N — 2ig,"NN .

If the gauge transformation is chosen instead to be this one:
N> (1 -+iv-vy)N,

2,
™ —>7r+

v
y
9o
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then P_is Ny, y, N — (2im,/g,) O, 7 and its divergencs is:

2

i 8.2, . - 2m, . 8,1, .
o = 2ig,eNN — —go—” paim — *guo i

Tn neither of these two cases does the divergence seem to have any simple
properties. If, however, we change the theory of the strong interactions, we
may find & gauge transformation that yields an axial veector eurrent with a
simple divergence; in fact we may find a current for which

o, P = iar,
giving eq. (5) and implying eq. (12) that explains the pion lifetime.

Evidently what we require is a Lagrangian for which there iz a gauge
transformation with pseudoscalar gauge veetor v such that:

28 Sy— «
(28) o = T

For constant v, then, the Lagrangian must be nearly invariant, with the gauge
trausformation adding only the term a¢ =-v.
Let us now examine the models so far discovered in which that happens.

4, - The gradient coupling model.

The first model to be found makes use of the gradient. coupling theory.
1f we treat just nucleons and pions for simplicity, the Lagrangian is:

- . orc)2 2 2
(29) L= — Ny ¢ 4 my - ifyt- Omy,y;) N — %‘l _,u‘,;p .
Except for the last term it is invariant under the gauge transformation:

NN,
(30)
®—>n+flv,

when v is constant and the last term gives just am-v with:

(31) a:—%.
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The current P, is, of course, given by:

&

. 0%, = i
0 — — —_——
(32) P, =i So0 N,y N 7 4.

Comparing eq. (31) with eq. (11) we find:

_ 6w Vb

(53) G my f

d-(0) F(0),

where f, == ¢,/2m is the renormalized version of f,. This relation can, of course,
be proved directly for the gradient coupling theory with the axial vector cur-
rent given in (32). In fact, there are two independent relations in the theory:

(34) _ G Jf: F.(0)
(l ’ ’
v fu\// Z3

and
Zyul

(35) b g g0y =1,

k13

the produet of which gives eq. (33). Both are easy to prove. The first follows
from the similarity of the weak pseudovector current and the source of the
pion field. (The term in ¢z in the weak current contributes nothing at zero
energy.) The second relation obtains because at zero momentum the correction
to the free meson propagator vanishes, since the source of the field is the
divergeuce of Ny, y, N.

The gradient eoupling model has two weak points. First, as is well known,
there are violent divergences in every term of the perturbation expansion.
Tf these were to be expressed as renormalizations, it would require the renor-
malization of an infinite number of parameters. Of course, we could simply
introduce a cut-off, but then all quantities of physical interest would depend
strongly on the cut-off (at least in the perturbation expansion) and the formal
manipulations of the theory, such as we have carried out above, are not ob-
viously meaningful.

The second point, which might not be sevious, is that in our introduetion
of the weak currents by the gauge transformations (22) and (30), there is no
similarity whatever between the gauges that generate the vector and the
pseudoveetor currents. In the transformations (30) the term j,y; in the weak
current for the nucleons is generated from the coupling term of the Lagrangian
(29), while the corresponding vector terni y, is, of course, generated from the
free Lagrangian.
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Yet we have evidence that the weak interactions are symmetrical be-
tween V and {4, particularly their apparent equality of strength and the fact
that for the leptons, which have no strong couplings, the weak coupling is

just y,(1+y,).

5. — The ¢ model.

We have another example of a theory in which eq. (5) holds, if we take a
Lagrangian for the strong interactions that is essentially one proposed by
ScHWINGER (**) and then for the axial vector enrrent the form suggested by
POLKINGHORNE (7).

Again, for simplicity, we restrict ourselves to nuecleons and pions only,
except that we introduce (following SCHWINGER] 3 new scalar meson g, with
isotopic spin zero. It has strong interactions, and thus might easily have
escaped observation if it is mueh heavier than 7=, so that it would disintegrate
immediately into two pions. It would appear experimentally as a resonant
state of two pions with J=0, I ==0,

We take for our Lagrangian the following one, which leads to a renor-
malizable theory of the strong interactions:

(36) L= Ny2 +my—gylo + immpy - (T (OF

2 2 2

&

2 . 2/‘:'” 0-2 2 2\ 2 2 9
— s+ =) 5 — A {7+ o — 2 alo? + 7,
fO - I[J

where f, = g,/2m,.

We have the usual pseudosecalar theory of the pion, with the ¢ added in
a rather symmetrical way. The nature of the symmetry is made much clearer
if we perform a translation of the tield variabhle ¢ and re-express the Lagran-
gian in terms of the variable:

1

(37) o'=g¢

fi

‘We have:

(97!:)3‘“ ‘(80')‘-’ y?,

(88) L= —N[ye—go + it m,)| N — 5 5 Ty (e —
11 uh

— A2 - B

0|7T*+ o 4]%] 2%0,

(%) J. ScRWINGER: Ann. Phys., 2, 407 (1957).
(‘") J. C. PoLxINciorNE: Nuovo Cimenlo, 8, 179, 781 (1958).
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apart from an additive constant. It is e¢vident at once that only the last term
breaks the symmetry under the gauge transformation:

N —>(1+it vy)N,
(39) T ->%®— 2vo’,

o’ -—?O"JFZU'R,
with » constant. It is easy to see also that if the last term were abgent the
symmetry (39) would prevent the nucleon having any mass.

We now construet the pseudoveetor weak cwrrent from the same gauge
transformation. We find:

i3.%, F

2 Mo
40 P Y
(40) o =™
so that eq. (27) holds with & = —g/f, as for the gradient coupling model.
The current P, comes out:
(41) P, = Nxy.p,N - 2i(0' 0,1 — mia) =

= Noyy, N + 2i(o8,m — wd,0) ~f1 aT.

This time the gauge transformation that vields the axial veetor current is
closely related to the one (eq. (22)) that gives the vector eurvent. 'Together,
in faet, they form the generators of the rotation group in a four-dimensional
Euclidean space. 1t ie evident that, apart from the last term, the Lagrangian
of eq. (38) is invariant under these four-dimensional rotations when the func-
tions u and v are constant. The last term breaks the four-dimensional sym-
metry, but leaves the three-dimensional symmetry unchanged.

We may, if we like, consider a rotation in four dimensions that is a produet
of the rotations (22) and (39) with u= v ="w. We have:

N—[1+ivw(l +,)¥,
(42) T 1 — 2ws — 2wX T,
¢ o +2w-rw.
It is this rotation that generates the complete weak current P+ V.
We see that if the mesons are taken out of the theory, then the transfor-

mation (42) works only on the free nucleon Lagrangian and we generate a weak
current equal to Nt (1-+4y;)N, which resembles the lepton weak current. Thus
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the lack of symmetry between 17 and 4 mentioned in connection with the
gradient coupling theory is not present here.

We don’t have the divergence difficulty either—the present model is fully
renormalizable. Moreover, the various matrix clements of the weak current
geem to come out finite as well; even the renormalization factor — ¢/, /G is
finite (*).

Note that since & = — pi/f, in both theories, eq. (33) is valid for both.
(At first sight, it may look as if the individual theorems (34) and (35) also
hold in the ¢ model, but in fact they don’t work in perturbation theory.)

Tn view of eq. (33), which expresses — (,/G in terms of several divergent
quantities, it may appear rather remarkable that it is finite. Tn particular,
the reader may wonder what cancels the quadratic divergences of pi/m%. The
answer is that f,/f, is the product of ¢,/y, and m,/m, and that in the ¢ model
the quantity m,/m, possesses quadratic divergences. even in second order.
They come from «tadpole » diagrams in which a ¢ meson, emitted by the
nucleon, turns into a nucleon and antinucleon that eat each other. It is the
scalar, I = 0 quality of o that makes snch diagrams possible.

The s model, although it has some agreable features that we have men-
tioned. is quite artificial. A new particle is postulated, for which there is no
experimental evidence. It is true that if ¢ had a high enough mass it wounld
not be easily detectable and that the theory allows for different = and ¢ masses,
but we know of no theoretical reason for the mass of & to come out very high.

The fact that the ¢ coupling is responsible for the nucleon mass is a curious
property of the model. Unless we can explain all masses, or at least all baryon
masses, in 4 similar way, it is not very satisfactory.

Tn any case. we are faced with the problem of extending our invariance
under the v» transformation to the strange particles. Tf we want to preserve
the relation (27), we must add no new terms that violate the invariance for
constant v.

Tnfortunately the invariant coupling of m and '. which we have used
for the nncleon and which gives the nucleon mechanical mass through the
coupling to o', cannot be applied to an isotopie singlet or triplet like the A
and X. We may, of course, make use of global symmetry (**} or a restricted
version of it in which A and X are degenerate, so that they can be freated as
a pair of doublets. But then all onr theorems are approximate, violated hy
the mechanism that splits A and X; and the idea that the splitting interactions
are « medium strong » and not very important has not received much exper
imental support.

(') J. BERNSTEIN, M. GELL-MaANN and L. MicnerL: Nuovo Cimento, 16, 560 (1960).
(1) M. GrErLL-MANN: Phys. Ree., 106, 1296 (1957) and J. RCAWINGER: ret. (16).
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6. - The non-linear model.

Let us consider the possibility of modifying the ¢ model by making the
o field a function of the = field rather than the field of a new particle. We
want, however, to preserve the invariance (in eq. (38)) of the strong inter-
action Lagrangian %, (except for the term — (u(/2f)o’) under four-dimen-
sional rotations among m,, m,, m, and ¢'. Thus the only condition we can
apply to =m and ¢’ is the condition:

(13) nt o't = (7,

where (' is a constant. If we define g, to be positive, then we must take the
negative square root for ¢':

o'=—V(—q7?,

in order to have a positive mass term for the nucleon. If, when g, tends to
zero, this mass term is to be simply m,, then €2 must be 1/4f? so that g,/ €2 =m,.
We have, then,

fr | IR —
— — V1 — 4f2m2 .
/1% 14 70\/ fon

(44) a’:~] =3

Instead of the Lagrangian %,, we have:

3 e 2
45 2, - {~ Ny e — go(o'+ it 7y | N — (,.?f.)f (Ei r_ f)‘_f" o"}
— - P 0
1 -
¢ = ~ 5 V1i—A4piat,

to within a constant.

This Lagrangian can also be derived by another, slightly more general,
method. We can modify the usual pseudoscalar coupling theory by ehanging
every comnstant into an arbitrary function of x?:

_ _ _ 2 1
g; = N7 N — my(n*) NN -+ igo(ﬂz)N%T'ﬂN“:u(zl(”?)%_g F,(n?) auﬂi au-ﬂf ’

with

Fy(m?) = fo(#®) 0s; + fula®) iz,

This general expression contains five different functions of m? instead of only.
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one as in the previous derivation (i.e. ¢’'(n?). We now require that equations
of motion have as a consequence eq. (27), and that 3; tend to the usual pseudo-
scalar coupling theory when ¢, —0. It then follows that the five arbitrary
functions are determined uniquely by these requirements and that the cor-
responding Lagrangian coincides with £, to within a constant.

The new Lagrangian represents a theory of the strong interactions of nu-
cleons and pions different from both the gradient coupling and the pseudo-
scalar coupling theories. We may re-express it as follows:

(16) Ly — — N[y? = moV'1 — df3a* — igy -y, | N -
(fm)*  2foimeam] o, . .
S R I Y V4 Y P B
9 | ifine *415( fo* —1),,

again to within a constant. Expanding the Lagrangian to tfirst order in the
coupling constant, we have just the pseudoscalar coupling theory, but the
remaining orders modify the interaction and destroy its renormalizability in
perturbation theory (*).

It is conceivable that the theory may somehow be renormalizable anyway.
Nappose we consider the Lagrangian %,, which is certainly renormalizable,
aund express all the various amplitudes as funclional integrals over classical
field variables 7w and 6'. The results of the new theory are obtained from those
of the 5 theory simply by incorporating in the functional integrals a4 §-function
of o' =\ 1/4f2—m* Tt is hard to see how this restriction of the integrations
can really render the theory more singular.

We may think of the restrietion =°-+ o — 1/4f2 as resulting simply from
a choice of the parameter 4, in the Lagrangian %, of the s model. If we take
Ao = -+ oo, then that corresponds, at least classically, to an infinitely steep
potential well for the quantity #*-¢°— (1 J4fg), confining it to the value zero.

It should be noted that in the non-linear theory the higher order corrections
to the pseudoscalar coupling Lagrangian are perhaps such as to improve agree-
ment with experiment. We know that in the pseudoscalar theory in second
order the scattering length for zero-momentum, zero-energy pions on nucleons
is — g*/m, while experimentally the low encrgy N-wave =- N scattering ampli-
tude without charge exchange is very small. We can see, though, that in the
Lagrangian %; the second order term 2m,f2NNna® just cancels out the second
order effect of the first order coupling. It seems that the cancellation of ob-
noxious terms like g%/m, g'/m, ete., occurs to all orders.

(") J. BerNSTEIN, M. GELL-Many and L. Mrcirin: Nuove Cimento, 16, 560 (1960).

46 - Il Nuovo Cimento.
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There is perhaps some hope, then, that the non-linear Lagrangian might
lead to a small S-wave =-N scattering amplitude without charge exchange
in perturbation theory. The lowest order N-wave amplitude with charge ex-
change is in any case of the right order of magnitude, as in the psendoscalar
and gradient coupling theories.

The other new term that appears in second order is --2fi(m-¢,n°) —
— (u3/2) f2(2®)? which describes =-= scattering with an unrenormalized ampli-
tude of the order of plfi; it is interesting that CHEwW and MANDELSTAM have
considered w-= scattering with a renormalized amplitude of the order of m.f;.

In the non-linear model, the construction of the weak currents by gauge
transformations from the strong coupling Lagrangian goes through much as
in the ¢ model. The important features are that the vector current is still
divergenceless, the divergence of the pseudovector current is still proportional
to the = field, and the gauge group is essentially the same as before.

It should be added that the w field used here is not of the usual type,
since |mi< f,. We can transform, however, to a morc normal pion field 7
by a simple substitution such ag 7 =71 -+ fimr)y. Of course o P, is still
proportional to =, nob to . See BERNSTEIN, FUBINT, GELL-MANN and THIRRING
(loc. eit.).

This third model belongs to a class of theories vecently discussed by
GURSEY (1), who has particularly emphasized the four-dimensional rotations,
although he has not considered isotopic rotations that are functions of space
and time.

7. — Symmetry operators of the models.

The symmetry properties of the models can best be exhibited in terms of
the operators that generate the gauge transformations which, in turn, gene-
rate the weak current P, 4V, . Let us consider the truncated version of each
theory in which the term in the Lagrangian proportional to a is suppressed
so that the weak current is exactly conserved. We may then construct the
constant operator R, proportional to f d3z( P, +V,), which generates the gauge
transformations of the theory with infinitesimal gauge function w:

) pi(x) — (L — i R-w(@)) p,(@)(1 + i R-w(x))
7
| — i) — iw()-[R, p(2)],

(%) F. GUrsEY: Nuovo Cimento, 16, 230 (1860).
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where y, represents any of the field components. The operator R for the weak
current is analogous to the electric charge operator @ for the electromagnetic
current. We may, of course, separate the parts of R that correspond to the
vector and the pseudovector currents. As long as we stick to the conserved
vector current theory (and to our choice of scale for the gauge function), then
the first part of R is simply twice the isotopic spin I. Let us write:

(18) R =2I-12D,

where 2D generates the pseudovector gauge transformations.
In the first model, it is easy to see from eq. (30), that D is a translation
operator, so that we have the commutation rules:

(49) [D;, D;] =0,
as well as the rules
[Iz" [}] = i(.’[]/f Ik [

(50)
(L, D;1 =ieDy,

that follow from I being the isotopic spin and D an isotopic vector. Here
¢ 18, of course the Kronecker antisymmetric tensor). The total operator R
then has the commutation ruley:

(51) [R:, R;] = die;n(ly + 2D))
that exhibit the asymmetry between T° and .1 characteristic of the gradient
coupling model (*).

In the second and third models, the operator D is not a translation ope-
rator; in place of (4a) we have the commutation rules:

(52) [D:, D] =iey T,
which give for R the very simple rules:

{(93) [R;, R;] = Sie (I, - Dy) -- 4ie, k).

"y Of course, what really counts is the nature of the commutation relations for
the complete operators that generate the sum of the AS=0 and AS=1 currents.
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In other words, R is just four times an angular momentum:

(54) R-—141

A4t

But in the same way we can show that 2I — 2D is four times an angular
momentum I, and furthermore that I, and I, commute. Thus the isotopic
spin I can be written as the sum of two commuting angular momenta:

(55) I-1,+1,,

and the weak current is just proportional to the current of the «spin» I,.
We have just demonstrated the well-known property of the group of rota-
tions in a four-dimensional Euclidean space (**), that it can be generated by
two commuting angular momenta.

In our second and third models, we have assigned quantum numbers as
follows:

l\vz, (%7 0) ’
(56) N, (0, 1),
(Tt, G/) (%7 é) ]

where we use the notation of Giirsey ('®), in which N, oc(3-+9,)N and
N, (1 —y,)N and the quantum numbers are written in the form (I,, L).

8. — Conclusions.

We have found three models of the strong and weak interactions of nucleons
and pions in which the divergence of the axial vector weak current is propro-
tional to the pion field, and we have shown that this property can explain the
decay rate of the charged pion.

The gradient coupling model is highly divergent without a cut-off and the
weak interaction is introduced in a way that is unsymmetrical between V°
and 4. However, to extend thiz model to the AN = 0 weak interactions of
strange particles is very easy. As long as the source of the pion field is the
divergence of a pseudovector, we can always find an axial vector current with
the right property.

(®) A. Pais: Proc. Nat. Acad. Sei., 40, 835 (1954).
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The ¢ model is renormalizable and even the matrix elements of the weak
coupling seem to be finite. Moreover. the four-dimensional invariance (hroken
only by one term which is responsible for the nodeon mass and for the non
vanishing divergence of the axial vector current) gives complete symmetry
between 17 and 1. Tlowever the model involves the introduection of a new
particle. It also presents difficultics when we try to extend it to the strange
pavticles, because the high symmetry of the coupling to © and ¢, while easy
to arrange for a fermion of isotopie spin & like the nueleon, is hard to imitate
A or X or K, unless, of course, we do it approximately, making use of some-
thing like global symmetry.

The non linear model does: not appear venormalizable although it might
he so In some unusual sense. It avoids, however, the introduction of a new
particle, while retaining the symmetry properties of the ¢ model. The diffi-
culty of extension to the strange particles is of course, the same for hoth models.

Since all the models seem to have some unpleasant features, we should
certainly reconsider whether the formula of Goldberger and Treiman can be
plausibly derived without such a stringent condition as eq. (3).

To the extent that one tries to vetain eq. (3) or something like it, one might
pursue further research along several lines: trying to include the strange par
ticles: trying to renormalize the third model: exploring the connection of onr
gatnge transformations with possible intermediate fields for the weak inter-
actions; seeking to deseribe the AN — 1 weak interactions as well as those
with AN = 0; and looking for parallels between the weak interactions of leptons
and those of baryons and mesons.

In closing, let us emphasize that we wish this work to be considered as w
highly tentative etfort. We have after all, explained only one experimental
number, the charged pion lifetime. We do not want to give the impression
that the whole theory of strong and weak interactions should be based on
this one number, like & pyramid bhalaneed on one point. We do hope, however,
that if this type of investigation iy pursued further, it may lead to other pre-
dietions or to correlations of experimental data.

One of us (M. GELL-MANN) would like to thank Prof. ABDUS SanaM for
his hospitality at Imperial College, London, and for many valuable conver-
sations. He is grateful to Prof. R. P. FEYNMAN and Drs. E. R. NorToN and
W. K. R. Warson for the discussions of the gradient coupling model that
initiated this work. He is also indebted to Dr. J. BErRNSTEIN for discussions
of gauge invariance.
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Allo scopo di dedurre in maniera convincente la formula di Goldberger e Ireiman
per il tasso di decadimento dei pioni carichi, prendiamo in considerazione la pos-
sibilita che la divergenza della corrente vettoriale assiale nel decadimento & sia pro-
porzionale al campo del pione. Si presentano tre modelli della interazione pione.
nucleone (e della corrente debole) che hanno la proprieta richiesta. Il primo, che si
serve dell’accoppiamento di gradiente, ha il vantaggio di poter essere facilmente genera-
lizzato alle particelle strane, ma gli svantaggi di non essere rinormalizzabile e di
introdurre le correnti vettoriale e vettoriale assiale in modo asimmetrico. 11 secondo
modello, che usa un'interazione forte proposta da ScawINGER ed una corrente debole
proposta da PoLkINmORNYE, & rinormalizzabile e simmetrico fra 7 ed .4, ma com-
porta la postulazione di una nuova particella ed ¢ difficilmente estensibile alle parti-
celle strane. Il terzo modello ¢ simile al secondo salvo che non & necessario intro-
durre una nuova particella. (Si perde, tuttavia, la rinormalizzazione nel senso usuale.)
Si suggerisce una ulteriore ricerca su queste linee, compresa la considerazione della
possibilitd ehe il tasso di decadimento del pione possa ottemersi in modo plausibile
con condizioni meno restrittive.

*y Tradusione a cura delle Redazione.



